Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
-
from transformers import AutoTokenizer,
|
2 |
-
from transformers import pipeline
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
|
@@ -10,8 +9,22 @@ model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
10 |
"Kaludi/chatgpt-gpt4-prompts-bart-large-cnn-samsum", from_tf=True)
|
11 |
|
12 |
# zephyr
|
13 |
-
pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-alpha",
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
|
17 |
def useZephyr(prompt):
|
@@ -23,12 +36,8 @@ def useZephyr(prompt):
|
|
23 |
{"role": "user", "content": prompt},
|
24 |
]
|
25 |
# https://huggingface.co/docs/transformers/main/en/chat_templating
|
26 |
-
|
27 |
-
messages, tokenize=False, add_generation_prompt=True)
|
28 |
-
print(prompt)
|
29 |
|
30 |
-
outputs = pipe(prompt, max_new_tokens=256, do_sample=True,
|
31 |
-
temperature=0.7, top_k=50, top_p=0.95)
|
32 |
return outputs[0]["generated_text"]
|
33 |
|
34 |
|
@@ -57,11 +66,12 @@ def generate_prompt(prompt, max_new_tokens):
|
|
57 |
|
58 |
|
59 |
input_prompt = gr.Textbox(label="Prompt", value="photographer")
|
|
|
60 |
output_component = gr.Textbox(label="Output")
|
61 |
examples = [["photographer"], ["developer"], ["teacher"], [
|
62 |
"human resources staff"], ["recipe for ham croquettes"]]
|
63 |
description = ""
|
64 |
-
PerfectGPT = gr.Interface(useZephyr, inputs=input_prompt, outputs=output_component,
|
65 |
examples=examples, title="๐ฟ PerfectGPT v1 ๐ฟ", description=description)
|
66 |
|
67 |
-
PerfectGPT.launch()
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline
|
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
|
|
|
9 |
"Kaludi/chatgpt-gpt4-prompts-bart-large-cnn-samsum", from_tf=True)
|
10 |
|
11 |
# zephyr
|
12 |
+
# pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-alpha", torch_dtype=torch.bfloat16, device_map="auto")
|
13 |
+
|
14 |
+
|
15 |
+
hf_model_id = "HuggingFaceH4/zephyr-7b-alpha"
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(hf_model_id)
|
17 |
+
tokenizerZephyr = AutoTokenizer.from_pretrained(hf_model_id, legacy=False)
|
18 |
+
generation_config, unused_kwargs = GenerationConfig.from_pretrained(hf_model_id, max_new_tokens=200, temperature=0.7, return_unused_kwargs=True)
|
19 |
+
|
20 |
+
model.generation_config = generation_config
|
21 |
+
|
22 |
+
pipe = pipeline(
|
23 |
+
"text-generation",
|
24 |
+
model=model,
|
25 |
+
tokenizer=tokenizerZephyr,
|
26 |
+
)
|
27 |
+
pipe(prompt)
|
28 |
|
29 |
|
30 |
def useZephyr(prompt):
|
|
|
36 |
{"role": "user", "content": prompt},
|
37 |
]
|
38 |
# https://huggingface.co/docs/transformers/main/en/chat_templating
|
39 |
+
outputs = pipe(prompt)
|
|
|
|
|
40 |
|
|
|
|
|
41 |
return outputs[0]["generated_text"]
|
42 |
|
43 |
|
|
|
66 |
|
67 |
|
68 |
input_prompt = gr.Textbox(label="Prompt", value="photographer")
|
69 |
+
input_maxtokens = gr.Textbox(label="Max tokens", value="150")
|
70 |
output_component = gr.Textbox(label="Output")
|
71 |
examples = [["photographer"], ["developer"], ["teacher"], [
|
72 |
"human resources staff"], ["recipe for ham croquettes"]]
|
73 |
description = ""
|
74 |
+
PerfectGPT = gr.Interface(useZephyr, inputs=[input_prompt, input_maxtokens], outputs=output_component,
|
75 |
examples=examples, title="๐ฟ PerfectGPT v1 ๐ฟ", description=description)
|
76 |
|
77 |
+
PerfectGPT.launch()
|