lruizap commited on
Commit
3f3bd49
ยท
1 Parent(s): 93e7c19

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -11
app.py CHANGED
@@ -1,5 +1,4 @@
1
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
2
- from transformers import pipeline
3
  import torch
4
  import gradio as gr
5
 
@@ -10,8 +9,22 @@ model = AutoModelForSeq2SeqLM.from_pretrained(
10
  "Kaludi/chatgpt-gpt4-prompts-bart-large-cnn-samsum", from_tf=True)
11
 
12
  # zephyr
13
- pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-alpha",
14
- torch_dtype=torch.bfloat16, device_map="auto")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
 
17
  def useZephyr(prompt):
@@ -23,12 +36,8 @@ def useZephyr(prompt):
23
  {"role": "user", "content": prompt},
24
  ]
25
  # https://huggingface.co/docs/transformers/main/en/chat_templating
26
- prompt = pipe.tokenizer.apply_chat_template(
27
- messages, tokenize=False, add_generation_prompt=True)
28
- print(prompt)
29
 
30
- outputs = pipe(prompt, max_new_tokens=256, do_sample=True,
31
- temperature=0.7, top_k=50, top_p=0.95)
32
  return outputs[0]["generated_text"]
33
 
34
 
@@ -57,11 +66,12 @@ def generate_prompt(prompt, max_new_tokens):
57
 
58
 
59
  input_prompt = gr.Textbox(label="Prompt", value="photographer")
 
60
  output_component = gr.Textbox(label="Output")
61
  examples = [["photographer"], ["developer"], ["teacher"], [
62
  "human resources staff"], ["recipe for ham croquettes"]]
63
  description = ""
64
- PerfectGPT = gr.Interface(useZephyr, inputs=input_prompt, outputs=output_component,
65
  examples=examples, title="๐Ÿ—ฟ PerfectGPT v1 ๐Ÿ—ฟ", description=description)
66
 
67
- PerfectGPT.launch()
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline
 
2
  import torch
3
  import gradio as gr
4
 
 
9
  "Kaludi/chatgpt-gpt4-prompts-bart-large-cnn-samsum", from_tf=True)
10
 
11
  # zephyr
12
+ # pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-alpha", torch_dtype=torch.bfloat16, device_map="auto")
13
+
14
+
15
+ hf_model_id = "HuggingFaceH4/zephyr-7b-alpha"
16
+ model = AutoModelForCausalLM.from_pretrained(hf_model_id)
17
+ tokenizerZephyr = AutoTokenizer.from_pretrained(hf_model_id, legacy=False)
18
+ generation_config, unused_kwargs = GenerationConfig.from_pretrained(hf_model_id, max_new_tokens=200, temperature=0.7, return_unused_kwargs=True)
19
+
20
+ model.generation_config = generation_config
21
+
22
+ pipe = pipeline(
23
+ "text-generation",
24
+ model=model,
25
+ tokenizer=tokenizerZephyr,
26
+ )
27
+ pipe(prompt)
28
 
29
 
30
  def useZephyr(prompt):
 
36
  {"role": "user", "content": prompt},
37
  ]
38
  # https://huggingface.co/docs/transformers/main/en/chat_templating
39
+ outputs = pipe(prompt)
 
 
40
 
 
 
41
  return outputs[0]["generated_text"]
42
 
43
 
 
66
 
67
 
68
  input_prompt = gr.Textbox(label="Prompt", value="photographer")
69
+ input_maxtokens = gr.Textbox(label="Max tokens", value="150")
70
  output_component = gr.Textbox(label="Output")
71
  examples = [["photographer"], ["developer"], ["teacher"], [
72
  "human resources staff"], ["recipe for ham croquettes"]]
73
  description = ""
74
+ PerfectGPT = gr.Interface(useZephyr, inputs=[input_prompt, input_maxtokens], outputs=output_component,
75
  examples=examples, title="๐Ÿ—ฟ PerfectGPT v1 ๐Ÿ—ฟ", description=description)
76
 
77
+ PerfectGPT.launch()