Spaces:
Runtime error
Runtime error
Actualizado Inputs
Browse files- HuggingFaceH4_zephyr-7b-alpha.ipynb +0 -0
- app.py +15 -22
HuggingFaceH4_zephyr-7b-alpha.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
app.py
CHANGED
@@ -1,28 +1,17 @@
|
|
1 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
|
5 |
# chatgpt-gpt4-prompts-bart-large-cnn-samsum
|
6 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
7 |
-
|
|
|
|
|
8 |
|
9 |
# zephyr
|
10 |
-
pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-alpha",
|
11 |
-
|
12 |
-
def useZephyr(prompt):
|
13 |
-
messages = [
|
14 |
-
{
|
15 |
-
"role": "system",
|
16 |
-
"content": "You are a friendly chatbot who always responds in the style of a pirate.",
|
17 |
-
},
|
18 |
-
{"role": "user", "content": prompt},
|
19 |
-
]
|
20 |
-
# https://huggingface.co/docs/transformers/main/en/chat_templating
|
21 |
-
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
22 |
-
print(prompt)
|
23 |
-
|
24 |
-
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
25 |
-
return outputs[0]["generated_text"]
|
26 |
|
27 |
|
28 |
def useZephyr(prompt):
|
@@ -34,8 +23,11 @@ def useZephyr(prompt):
|
|
34 |
{"role": "user", "content": prompt},
|
35 |
]
|
36 |
# https://huggingface.co/docs/transformers/main/en/chat_templating
|
37 |
-
|
|
|
38 |
|
|
|
|
|
39 |
return outputs[0]["generated_text"]
|
40 |
|
41 |
|
@@ -69,7 +61,8 @@ output_component = gr.Textbox(label="Output")
|
|
69 |
examples = [["photographer"], ["developer"], ["teacher"], [
|
70 |
"human resources staff"], ["recipe for ham croquettes"]]
|
71 |
description = ""
|
72 |
-
|
|
|
73 |
examples=examples, title="๐ฟ PerfectGPT v1 ๐ฟ", description=description)
|
74 |
|
75 |
-
PerfectGPT.launch()
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
2 |
+
from transformers import pipeline
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
|
6 |
# chatgpt-gpt4-prompts-bart-large-cnn-samsum
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
8 |
+
"Kaludi/chatgpt-gpt4-prompts-bart-large-cnn-samsum")
|
9 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
10 |
+
"Kaludi/chatgpt-gpt4-prompts-bart-large-cnn-samsum", from_tf=True)
|
11 |
|
12 |
# zephyr
|
13 |
+
pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-alpha",
|
14 |
+
torch_dtype=torch.bfloat16, device_map="auto")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
|
17 |
def useZephyr(prompt):
|
|
|
23 |
{"role": "user", "content": prompt},
|
24 |
]
|
25 |
# https://huggingface.co/docs/transformers/main/en/chat_templating
|
26 |
+
prompt = pipe.tokenizer.apply_chat_template(
|
27 |
+
messages, tokenize=False, add_generation_prompt=True)
|
28 |
|
29 |
+
outputs = pipe(prompt, max_new_tokens=256, do_sample=True,
|
30 |
+
temperature=0.7, top_k=50, top_p=0.95)
|
31 |
return outputs[0]["generated_text"]
|
32 |
|
33 |
|
|
|
61 |
examples = [["photographer"], ["developer"], ["teacher"], [
|
62 |
"human resources staff"], ["recipe for ham croquettes"]]
|
63 |
description = ""
|
64 |
+
|
65 |
+
PerfectGPT = gr.Interface(generatePrompt, inputs=[input_prompt, input_maxtokens], outputs=output_component,
|
66 |
examples=examples, title="๐ฟ PerfectGPT v1 ๐ฟ", description=description)
|
67 |
|
68 |
+
PerfectGPT.launch()
|