from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from transformers import pipeline import torch import gradio as gr # chatgpt-gpt4-prompts-bart-large-cnn-samsum tokenizer = AutoTokenizer.from_pretrained( "Kaludi/chatgpt-gpt4-prompts-bart-large-cnn-samsum") model = AutoModelForSeq2SeqLM.from_pretrained( "Kaludi/chatgpt-gpt4-prompts-bart-large-cnn-samsum", from_tf=True) def generatePrompt(inputuno, inputdos): # zephyr pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-alpha",torch_dtype=torch.bfloat16, device_map="auto") prompt = inputuno promptdos = inputdos batch = tokenizer(prompt, return_tensors="pt") generated_ids = model.generate(batch["input_ids"]) output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) new_prompt = output[0] messages = [ { "role": "system", "content": str(new_prompt) }, { "role": "user", "content": str(promptdos) }, ] # https://huggingface.co/docs/transformers/main/en/chat_templating final_prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = final_prompt return outputs[0]["generated_text"] # # Interface input_prompt = gr.Textbox(label="Actua como: ", value="Chef") input_promptdos = gr.Textbox(label="Prompt: ", value="Recipe for ham croquettes") output_component = gr.Textbox(label="Output: ") examples = [["photographer"], ["developer"], ["teacher"], [ "human resources staff"], ["recipe for ham croquettes"]] description = "" PerfectGPT = gr.Interface(generatePrompt, inputs=[input_prompt, input_promptdos], outputs=output_component, examples=examples, title="🗿 PerfectGPT v1 🗿", description=description) PerfectGPT.launch()