from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from transformers import pipeline import torch import gradio as gr # chatgpt-gpt4-prompts-bart-large-cnn-samsum tokenizer = AutoTokenizer.from_pretrained( "Kaludi/chatgpt-gpt4-prompts-bart-large-cnn-samsum") model = AutoModelForSeq2SeqLM.from_pretrained( "Kaludi/chatgpt-gpt4-prompts-bart-large-cnn-samsum", from_tf=True) # zephyr pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-alpha", torch_dtype=torch.bfloat16, device_map="auto") def useZephyr(prompt): messages = [ { "role": "system", "content": "you are a chatbot who always responds politely and in the shortest possible way", }, {"role": "user", "content": prompt}, ] # https://huggingface.co/docs/transformers/main/en/chat_templating prompt = pipe.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt) return outputs[0]["generated_text"] def generatePrompt(prompt): batch = tokenizer(prompt, return_tensors="pt") generated_ids = model.generate(batch["input_ids"]) output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) prompt = output[0] result = useZephyr(prompt) return result # # Interface input_prompt = gr.Textbox(label="Prompt", value="photographer") output_component = gr.Textbox(label="Output") examples = [["photographer"], ["developer"], ["teacher"], [ "human resources staff"], ["recipe for ham croquettes"]] description = "" PerfectGPT = gr.Interface(generatePrompt, inputs=input_prompt, outputs=output_component, examples=examples, title="🗿 PerfectGPT v1 🗿", description=description) PerfectGPT.launch()