import gradio as gr __all__ = ["block", "make_clickable_model", "make_clickable_user", "get_submissions"] import numpy as np import pandas as pd from constants import * from src.auto_leaderboard.model_metadata_type import ModelType global data_component, filter_component, ref_dic def upload_file(files): file_paths = [file.name for file in files] return file_paths def read_xlsx_leaderboard(): df_dict = pd.read_excel(XLSX_DIR, sheet_name=None) # get all sheet return df_dict def get_specific_df(sheet_name): df = read_xlsx_leaderboard()[sheet_name].sort_values(by="Overall", ascending=False) return df def get_link_df(sheet_name): df = read_xlsx_leaderboard()[sheet_name] return df ref_df = get_link_df("main") ref_dic = {} for id, row in ref_df.iterrows(): ref_dic[ str(row["Model"]) ] = f'{row["Model"]}' def wrap_model(func): def wrapper(*args, **kwargs): df = func(*args, **kwargs) df["Model"] = df["Model"].apply(lambda x: ref_dic[x]) # cols_to_round = df.select_dtypes(include=[np.number]).columns.tolist() # cols_to_round = [col for col in cols_to_round if col != "Model"] # df[cols_to_round] = df[cols_to_round].apply(lambda x: np.round(x, 2)) all_cols = df.columns.tolist() non_numeric_cols = df.select_dtypes(exclude=[np.number]).columns.tolist() cols_to_round = [col for col in all_cols if col not in non_numeric_cols and col != "Model"] df[cols_to_round] = df[cols_to_round].apply(lambda x: np.round(x, 2)) return df return wrapper @wrap_model def get_base_zh_df(): return get_specific_df("base-zh") @wrap_model def get_base_en_df(): return get_specific_df("base-en") @wrap_model def get_attack_zh_df(): return get_specific_df("attack-zh") @wrap_model def get_attack_en_df(): return get_specific_df("attack-en") def build_leaderboard( TABLE_INTRODUCTION, TAX_COLUMNS, get_chinese_df, get_english_df ): gr.Markdown(TABLE_INTRODUCTION, elem_classes="markdown-text") data_spilt_radio = gr.Radio( choices=["Chinese", "English"], value="Chinese", label=SELECT_SET_INTRO, ) # 创建数据帧组件 data_component = gr.components.Dataframe( value=get_chinese_df, headers=OVERALL_INFO + TAX_COLUMNS, type="pandas", datatype=["markdown"] + ["number"] + ["number"] * len(TAX_COLUMNS), interactive=False, visible=True, wrap=True, column_widths=[250] + [100] + [150] * len(TAX_COLUMNS), ) def on_data_split_radio(seleted_split): if "Chinese" in seleted_split: updated_data = get_chinese_df() if "English" in seleted_split: updated_data = get_english_df() current_columns = data_component.headers # 获取的当前的column current_datatype = data_component.datatype # 获取当前的datatype filter_component = gr.components.Dataframe( value=updated_data, headers=current_columns, type="pandas", datatype=current_datatype, interactive=False, visible=True, wrap=True, column_widths=[250] + [100] + [150] * (len(current_columns) - 2), ) return filter_component # 关联处理函数 data_spilt_radio.change( fn=on_data_split_radio, inputs=data_spilt_radio, outputs=data_component ) def build_demo(): block = gr.Blocks() with block: gr.Markdown(LEADERBOARD_INTRODUCTION) with gr.Tabs(elem_classes="tab-buttons") as tabs: # first with gr.TabItem( "Base Risk Prompt Set Results", elem_id="evalcrafter-benchmark-tab-table", id=0, ): build_leaderboard( TABLE_INTRODUCTION_1, risk_topic_1_columns, get_base_zh_df, get_base_en_df ) # second with gr.TabItem( "Attack Prompt Set Results", elem_id="evalcrafter-benchmark-tab-table", id=1, ): build_leaderboard( TABLE_INTRODUCTION_2, attack_columns, get_attack_zh_df, get_attack_en_df ) # last table about with gr.TabItem("📝 About", elem_id="evalcrafter-benchmark-tab-table", id=3): gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text") with gr.Row(): with gr.Accordion("📙 Citation", open=True): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=10, elem_id="citation-button", show_label=True, show_copy_button=True, ) # block.launch(share=True) block.launch() if __name__ == "__main__": build_demo()