Spaces:
Runtime error
Runtime error
Commit
·
ac1af52
1
Parent(s):
319bf3d
added local.py
Browse files
app.py
CHANGED
@@ -1,7 +1,192 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
demo.launch()
|
|
|
1 |
+
import llama_cpp
|
2 |
+
import llama_cpp.llama_tokenizer
|
3 |
+
from llama_cpp import Llama
|
4 |
+
|
5 |
import gradio as gr
|
6 |
+
from loguru import logger
|
7 |
+
import psutil
|
8 |
+
from ctransformers import AutoModelForCausalLM,AutoTokenizer
|
9 |
+
|
10 |
+
|
11 |
+
prompt_template = """[INST] <<SYS>>
|
12 |
+
You are a helpful assistant for a crowdfunding platform called GiveSendGo. Your goal is to gather essential information for campaign and generate a title and sample pitch of atleast 1000 words for the campaign.
|
13 |
+
<</SYS>>
|
14 |
+
|
15 |
+
{question} [/INST]
|
16 |
+
"""
|
17 |
+
|
18 |
+
model_loc = "models/llama-2-13b-chat.Q5_K_M.gguf"
|
19 |
+
|
20 |
+
# llama = AutoModelForCausalLM.from_pretrained(
|
21 |
+
# model_loc,
|
22 |
+
# model_type="llama",
|
23 |
+
# context_length=4096,
|
24 |
+
# max_new_tokens=2048,
|
25 |
+
# hf=True
|
26 |
+
# # threads=cpu_count,
|
27 |
+
# )
|
28 |
+
|
29 |
+
|
30 |
+
# llama = llama_cpp.Llama.from_pretrained(
|
31 |
+
# #repo_id="Qwen/Qwen1.5-0.5B-Chat-GGUF",
|
32 |
+
# #filename="*q8_0.gguf",
|
33 |
+
# mode_path=model_loc,
|
34 |
+
# model_type="llama",
|
35 |
+
# context_length=4096,
|
36 |
+
# max_new_tokens=2048,
|
37 |
+
# filename="llama-2-13b-chat.Q5_K_M.gguf",
|
38 |
+
# tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B"),
|
39 |
+
# verbose=False
|
40 |
+
# )
|
41 |
+
|
42 |
+
llama = Llama(
|
43 |
+
model_path=model_loc,
|
44 |
+
max_tokens=4096,
|
45 |
+
n_ctx=4096,
|
46 |
+
verbose=False,
|
47 |
+
)
|
48 |
+
|
49 |
+
_ = [elm for elm in prompt_template.splitlines() if elm.strip()]
|
50 |
+
stop_string = [elm.split(":")[0] + ":" for elm in _][-2]
|
51 |
+
|
52 |
+
logger.debug(f"{stop_string=}")
|
53 |
+
|
54 |
+
_ = psutil.cpu_count(logical=False) - 1
|
55 |
+
cpu_count: int = int(_) if _ else 1
|
56 |
+
logger.debug(f"{cpu_count=}")
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
model = "gpt-3.5-turbo"
|
61 |
+
|
62 |
+
def predict(message, history):
|
63 |
+
messages = []
|
64 |
+
prompt = prompt_template.format(question=message)
|
65 |
+
|
66 |
+
for user_message, assistant_message in history:
|
67 |
+
messages.append({"role": "system", "content": prompt},)
|
68 |
+
messages.append({"role": "user", "content": user_message})
|
69 |
+
messages.append({"role": "assistant", "content": assistant_message})
|
70 |
+
|
71 |
+
messages.append({"role": "user", "content": message})
|
72 |
+
|
73 |
+
response = llama.create_chat_completion_openai_v1(
|
74 |
+
model=model,
|
75 |
+
messages=messages,
|
76 |
+
response_format={
|
77 |
+
"type": "json_object",
|
78 |
+
"schema": {
|
79 |
+
"type": "object",
|
80 |
+
"properties": {"title": {"type": "string"},
|
81 |
+
#"description": {"type": "string"},
|
82 |
+
"sample_pitch": {"type": "string"},
|
83 |
+
"amount": {"type": "string"},
|
84 |
+
"location": {"type": "string"}},
|
85 |
+
"required": ["title","sample_pitch","amount","location"], #description
|
86 |
+
},
|
87 |
+
},
|
88 |
+
temperature=0.7,
|
89 |
+
stream=True
|
90 |
+
)
|
91 |
+
|
92 |
+
text = ""
|
93 |
+
for chunk in response:
|
94 |
+
content = chunk.choices[0].delta.content
|
95 |
+
if content:
|
96 |
+
text += content
|
97 |
+
yield text
|
98 |
+
|
99 |
+
|
100 |
+
def generate(message):
|
101 |
+
|
102 |
+
try:
|
103 |
+
messages = []
|
104 |
+
prompt = prompt_template.format(question=message)
|
105 |
+
|
106 |
+
#for user_message, assistant_message in history:
|
107 |
+
messages.append({"role": "system", "content": prompt},)
|
108 |
+
#messages.append({"role": "user", "content": user_message})
|
109 |
+
#messages.append({"role": "assistant", "content": assistant_message})
|
110 |
+
|
111 |
+
messages.append({"role": "user", "content": message})
|
112 |
+
|
113 |
+
response = llama.create_chat_completion_openai_v1(
|
114 |
+
model=model,
|
115 |
+
messages=messages,
|
116 |
+
response_format={
|
117 |
+
"type": "json_object",
|
118 |
+
"schema": {
|
119 |
+
"type": "object",
|
120 |
+
"properties": {"title": {"type": "string"},
|
121 |
+
#"description": {"type": "string"},
|
122 |
+
"sample_pitch": {"type": "string"},
|
123 |
+
"amount": {"type": "string"},
|
124 |
+
"location": {"type": "string"}},
|
125 |
+
"required": ["title","sample_pitch","amount","location"], #description
|
126 |
+
},
|
127 |
+
},
|
128 |
+
temperature=0.7,
|
129 |
+
stream=False)
|
130 |
+
|
131 |
+
# text = ""
|
132 |
+
# for chunk in response:
|
133 |
+
# content = chunk.choices[0].delta.content
|
134 |
+
# if content:
|
135 |
+
# text += content
|
136 |
+
# logger.debug(f"api: {content=}")
|
137 |
+
|
138 |
+
# yield text
|
139 |
+
|
140 |
+
logger.debug(f"{response}")
|
141 |
+
|
142 |
+
return response.choices[0].delta.content
|
143 |
+
|
144 |
+
|
145 |
+
except Exception as exc:
|
146 |
+
logger.error(exc)
|
147 |
+
response = f"{exc=}"
|
148 |
+
|
149 |
+
|
150 |
+
def predict_api(message):
|
151 |
+
logger.debug(f"{message=}")
|
152 |
+
text = generate(message)
|
153 |
+
logger.debug(f"text::{text=}")
|
154 |
+
|
155 |
+
return f"json: {text=}"
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
js = """function () {
|
160 |
+
gradioURL = window.location.href
|
161 |
+
if (!gradioURL.endsWith('?__theme=dark')) {
|
162 |
+
window.location.replace(gradioURL + '?__theme=dark');
|
163 |
+
}
|
164 |
+
}"""
|
165 |
+
|
166 |
+
css = """
|
167 |
+
footer {
|
168 |
+
visibility: hidden;
|
169 |
+
}
|
170 |
+
full-height {
|
171 |
+
height: 100%;
|
172 |
+
}
|
173 |
+
"""
|
174 |
+
|
175 |
+
with gr.Blocks(theme=gr.themes.Soft(), js=js, css=css) as demo:
|
176 |
+
gr.ChatInterface(predict, examples=["What is the capital of France?", "Who was the first person on the moon?"])
|
177 |
+
|
178 |
+
with gr.Accordion("For Chat/Translation API", open=False, visible=False):
|
179 |
+
input_text = gr.Text()
|
180 |
+
api_btn = gr.Button("Go", variant="primary")
|
181 |
+
out_text = gr.Text()
|
182 |
+
|
183 |
+
api_btn.click(
|
184 |
+
predict_api,
|
185 |
+
input_text,
|
186 |
+
out_text,
|
187 |
+
api_name="api",
|
188 |
+
)
|
189 |
|
|
|
|
|
190 |
|
191 |
+
if __name__ == "__main__":
|
192 |
+
demo.queue().launch(debug=True, share=True)
|