Imageye's picture
Update app.py
924e4ea verified
raw
history blame
8.79 kB
import streamlit as st
from youtube_transcript_api import YouTubeTranscriptApi
import re
import tempfile
import os
import warnings
from groq import Groq
from whisper_jax import FlaxWhisperPipline
# Suppress specific warning
warnings.filterwarnings("ignore", message="FP16 is not supported on CPU; using FP32 instead")
# Set up Groq client
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
# Instantiate Whisper JAX pipeline
pipeline = FlaxWhisperPipline("openai/whisper-large-v2")
# Function to transcribe audio using Whisper JAX
def transcribe_audio(file_path):
# JIT compile the forward call - slow, but we only do once
text = pipeline(file_path)
# Used cached function thereafter - super fast!!
text = pipeline(file_path)
return text
# Function to get transcript from YouTube
def get_transcript(url):
try:
video_id_match = re.search(r"(?:v=|\/)([0-9A-Za-z_-]{11}).*", url)
if not video_id_match:
return "Error: Invalid YouTube URL"
video_id = video_id_match.group(1)
transcript = YouTubeTranscriptApi.get_transcript(video_id)
transcript_text = ' '.join([entry['text'] for entry in transcript])
return transcript_text
except Exception as e:
return str(e)
# Function to summarize text using Groq API
def summarize_text(text):
try:
response = client.chat.completions.create(
messages=[
{
"role": "user",
"content": f"Summarize the following text:\n\n{text}"
}
],
model="llama3-8b-8192",
)
summary = response.choices[0].message.content.strip()
return summary
except Exception as e:
return f"Error summarizing text: {e}"
# Function to generate quiz questions using Groq API
def generate_quiz_questions(text):
try:
response = client.chat.completions.create(
messages=[
{
"role": "user",
"content": f"Generate quiz questions for the following text:\n\n{text}"
}
],
model="llama3-8b-8192",
)
quiz_questions = response.choices[0].message.content.strip()
return quiz_questions
except Exception as e:
return f"Error generating quiz questions: {e}"
# Function to parse quiz questions from generated text
def parse_quiz_questions(quiz_text):
questions = []
question_blocks = quiz_text.split("\n\n")
current_question = None
current_choices = []
correct_answer = None
for block in question_blocks:
lines = block.strip().split("\n")
if lines:
if re.match(r'^\d+\.', lines[0]): # This line is a question number
if current_question and current_choices and correct_answer:
questions.append({
"question": current_question,
"choices": current_choices,
"correct_answer": correct_answer
})
current_question = lines[0]
current_choices = lines[1:5]
correct_answer = lines[-1].split(": ")[-1].strip() if len(lines) > 5 else None
else: # This line is an answer
correct_answer = lines[-1].split(": ")[-1].strip()
# Add the last question if it exists
if current_question and current_choices and correct_answer:
questions.append({
"question": current_question,
"choices": current_choices,
"correct_answer": correct_answer
})
return questions
# Function to generate explanation for quiz answers using Groq API
def generate_explanation(question, correct_answer, user_answer):
try:
response = client.chat.completions.create(
messages=[
{
"role": "user",
"content": f"Explain why the correct answer to the following question is '{correct_answer}' and not '{user_answer}':\n\n{question}"
}
],
model="llama3-8b-8192",
)
explanation = response.choices[0].message.content.strip()
return explanation
except Exception as e:
return f"Error generating explanation: {e}"
# Function to check answers and provide feedback
def check_answers(questions, user_answers):
feedback = []
correct_count = 0
for i, question in enumerate(questions):
correct_answer = question['correct_answer']
user_answer = user_answers.get(f"question_{i+1}", "")
if user_answer == correct_answer:
feedback.append({
"question": question['question'],
"user_answer": user_answer,
"correct_answer": correct_answer,
"status": "Correct"
})
correct_count += 1
else:
explanation = generate_explanation(question['question'], correct_answer, user_answer)
feedback.append({
"question": question['question'],
"user_answer": user_answer,
"correct_answer": correct_answer,
"status": "Incorrect",
"explanation": explanation
})
return feedback
# Function to handle uploaded files
def handle_uploaded_file(uploaded_file):
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
tmp_file.write(uploaded_file.read())
tmp_file_path = tmp_file.name
return tmp_file_path
# Streamlit app layout and functionality
st.title("YouTube Transcript Quiz Generator")
st.markdown("**Instructions:** Paste a YouTube link or upload a media file to generate a quiz.")
option = st.selectbox("Choose input type", ("YouTube URL", "Upload audio/video file"))
if "generated_quiz" not in st.session_state:
st.session_state.generated_quiz = False
if option == "YouTube URL":
url = st.text_input("YouTube URL", value="")
if url:
if st.button("Generate Quiz"):
transcript_text = get_transcript(url)
if "Error" not in transcript_text:
summary = summarize_text(transcript_text)
quiz_text = generate_quiz_questions(transcript_text)
questions = parse_quiz_questions(quiz_text)
if not questions:
st.error("No valid quiz questions could be generated.")
else:
st.session_state.summary = summary
st.session_state.questions = questions
st.session_state.user_answers = {}
st.session_state.generated_quiz = True
else:
st.error(transcript_text)
if option == "Upload audio/video file":
uploaded_file = st.file_uploader("Choose an audio or video file", type=["mp3", "wav", "mp4", "mov"])
if uploaded_file:
if st.button("Generate Quiz"):
tmp_file_path = handle_uploaded_file(uploaded_file)
transcript_text = transcribe_audio(tmp_file_path)
os.remove(tmp_file_path)
if "Error" not in transcript_text:
summary = summarize_text(transcript_text)
quiz_text = generate_quiz_questions(transcript_text)
questions = parse_quiz_questions(quiz_text)
if not questions:
st.error("No valid quiz questions could be generated.")
else:
st.session_state.summary = summary
st.session_state.questions = questions
st.session_state.user_answers = {}
st.session_state.generated_quiz = True
else:
st.error(transcript_text)
if st.session_state.generated_quiz:
st.write("## Summary")
st.write(st.session_state.summary)
st.write("## Quiz Questions")
for i, question in enumerate(st.session_state.questions):
st.write(f"### Question {i+1}")
st.write(question['question'])
st.session_state.user_answers[f"question_{i+1}"] = st.radio(
label="",
options=question['choices'],
key=f"question_{i+1}"
)
if st.button("Submit Answers"):
if "questions" in st.session_state and st.session_state.questions:
with st.spinner('ProcessingIf `whisper_jax` is not found, it might not be available on PyPI or installed properly. If you need to use an alternative or similar library, ensure it's correctly installed. Let's try another approach using `whisper` from OpenAI, which should be available on PyPI and can be used similarly.
### Updated `requirements.txt`
```txt
streamlit
youtube_transcript_api
groq
whisper