File size: 10,496 Bytes
1e16b4c
 
c6ce8a0
1e16b4c
c6ce8a0
1e16b4c
 
 
 
 
 
c571dab
 
 
 
1e16b4c
 
c571dab
1e16b4c
c571dab
 
1e16b4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6ce8a0
1e16b4c
c6ce8a0
1e16b4c
 
 
 
 
 
 
 
 
 
 
c6ce8a0
1e16b4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6ce8a0
1e16b4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bd1754
1e16b4c
 
 
 
 
 
1bd1754
1e16b4c
 
 
 
1bd1754
1e16b4c
1bd1754
1e16b4c
 
c6ce8a0
 
1e16b4c
 
 
 
 
 
 
 
 
 
c6ce8a0
 
1e16b4c
 
 
 
 
c6ce8a0
 
1e16b4c
 
 
 
c6ce8a0
1e16b4c
c6ce8a0
 
1e16b4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from typing import List

import gradio as gr
import numpy as np
import pandas as pd

_ORIGINAL_DF = pd.read_csv("./data/benchmark.csv")
_METRICS = ["MCC", "F1", "ACC"]
_AGGREGATION_METHODS = ["mean", "max", "min", "median"]
_TASKS = {
    "histone_marks": [
        "H2AFZ",
        "H3K27ac",
        "H3K27me3",
        "H3K36me3",
        "H3K4me1",
        "H3K4me2",
        "H3K4me3",
        "H3K9ac",
        "H3K9me3",
        "H4K20me1",
    ],
    "regulatory_elements": [
        "promoter_no_tata",
        "enhancers",
        "enhancers_types",
        "promoter_all",
        "promoter_tata",
    ],
    "RNA_production": [
        "splice_sites_donors",
        "splice_sites_all",
        "splice_sites_acceptors",
    ],
}

_BIBTEX = """@article{DallaTorre2023TheNT,
  title={The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics},
  author={Hugo Dalla-Torre and Liam Gonzalez and Javier Mendoza Revilla and Nicolas Lopez Carranza and Adam Henryk Grzywaczewski and Francesco Oteri and Christian Dallago and Evan Trop and Hassan Sirelkhatim and Guillaume Richard and Marcin J. Skwark and Karim Beguir and Marie Lopez and Thomas Pierrot},
  journal={bioRxiv},
  year={2023},
  url={https://api.semanticscholar.org/CorpusID:255943445}
}
"""  # noqa
_LAST_UPDATED = "Sept 15, 2023"

banner_url = "./assets/logo.png"
_BANNER = f'<div style="display: flex; justify-content: space-around;"><img src="{banner_url}" alt="Banner" style="width: 40vw; min-width: 300px; max-width: 600px;"> </div>'  # noqa

_INTRODUCTION_TEXT = """The πŸ€— Nucleotide Transformer Leaderboard aims to track, rank and evaluate DNA foundational models on a set of curated downstream tasks introduced in the huggingface dataset [nucleotide_transformer_downstream_tasks](https://huggingface.co/datasets/InstaDeepAI/nucleotide_transformer_downstream_tasks), with a standardized evaluation protocol presented in the "ℹ️ Methods" tab.\n\n

This leaderboard has been designed to provide, to the best of our ability, fair and robust comparisons between models. If you have any question or concern regarding our methodology or if you would like another model to appear in this leaderboard, please reach out to [email protected] and [email protected]. While we may not be able to take into consideration all requests, the team will always do its best to ensure that benchmark stays as fair, relevant and up-to-date as possible.\n\n
 """  # noqa

_METHODS_TEXT = """
This leaderboard uses the downstream tasks benchmark and evaluation methdology described in the Nucleotide Transformer paper. We fine-tune each model on each task using a ten-fold validation strategy. For each model and each task, we report the aggregation over the ten-folds for several metrics - the Matthew Correlation Coefficient (MCC), the macro f1-score (F1) and the accuracy (ACC). The Nucleotide Transformer, DNABert and Enformer models have been fine-tuned using the same parameter efficient fine-tuning technique (IA3) with the same set of hyper-parameters. Due to the different nature of their architecture, the HyenaDNA models have been fully-finetuned using the original code provided by the authors.
\n\n

Please keep in mind that the Enformer has been originally trained in a supervised fashion to solve gene expression tasks. For the sake of benchmarking, we re-used the provided model torso as a pre-trained model for our benchmark, which is not the intended and recommended use of the original paper. Though we think this comparison is interesting to highlight the differences between self-supervised and supervised learning for pre-training and observe that the Enformer is a very competitive baseline even for tasks that differ from gene expression.
\n\n

For the sake of clarity the tasks being shown by default in this leaderboard are the human related tasks while the original Nucleotide Transformer paper shows performance over both yeast and human related tasks. To obtain the same results as the one shown in the paper, please check all the tasks boxes above.
\n\n
"""  # noqa


def retrieve_array_from_text(text):
    return np.fromstring(text.replace("[", "").replace("]", ""), dtype=float, sep=",")


def format_number(x):
    return float(f"{x:.3}")


def get_dataset(
    histone_tasks: List[str],
    regulatory_tasks: List[str],
    rna_tasks: List[str],
    target_metric: str = "MCC",
    aggregation_method: str = "mean",
):
    tasks = histone_tasks + regulatory_tasks + rna_tasks

    aggr_fn = getattr(np, aggregation_method)
    scores = _ORIGINAL_DF[target_metric].apply(retrieve_array_from_text).apply(aggr_fn)
    scores = scores.apply(format_number)
    df = _ORIGINAL_DF.drop(columns=_METRICS)
    df["Score"] = scores
    df = df.pivot(index="Model", columns="Dataset", values="Score")
    df = df[tasks]
    df["All Tasks"] = df.agg("mean", axis="columns").apply(format_number)
    columns = list(df.columns.values)
    columns.sort()
    df = df[columns]
    df.reset_index(inplace=True)
    df = df.rename(columns={"index": "Model"})
    df = df.sort_values(by=["All Tasks"], ascending=False)

    leaderboard_table = gr.components.Dataframe(
        value=df,
        interactive=False,
        visible=True,
    )
    return leaderboard_table


def get_bar_plot(
    histone_tasks: List[str],
    regulatory_tasks: List[str],
    rna_tasks: List[str],
    target_metric: str = "MCC",
    aggregation_method: str = "mean",
):
    tasks = histone_tasks + regulatory_tasks + rna_tasks

    aggr_fn = getattr(np, aggregation_method)
    scores = _ORIGINAL_DF[target_metric].apply(retrieve_array_from_text).apply(aggr_fn)
    scores = scores.apply(format_number)
    df = _ORIGINAL_DF.drop(columns=_METRICS)
    df["Score"] = scores / len(tasks)
    df = df.query(f"Dataset == {tasks}")

    bar_plot = gr.BarPlot(
        df,
        x="Model",
        y="Score",
        color="Dataset",
        width=500,
        x_label_angle=-45,
        x_title="Model",
        y_title="Score",
        color_legend_title="Downstream Task",
    )
    return bar_plot


with gr.Blocks() as demo:
    with gr.Row():
        gr.Image(banner_url, height=160, scale=1)
        gr.Markdown(_INTRODUCTION_TEXT, elem_classes="markdown-text")
        # gr.Textbox(_INTRODUCTION_TEXT, scale=5)

    with gr.Row():
        metric_choice = gr.Dropdown(
            choices=_METRICS,
            value="MCC",
            label="Metric displayed.",
        )
        aggr_choice = gr.Dropdown(
            choices=_AGGREGATION_METHODS,
            value="mean",
            label="Aggregation used over 10-folds.",
        )

    with gr.Row():
        regulatory_tasks = gr.CheckboxGroup(
            choices=_TASKS["regulatory_elements"],
            value=_TASKS["regulatory_elements"],
            label="Regulatory Elements Downstream Tasks.",
            info="Human data.",
            scale=3,
        )
        rna_tasks = gr.CheckboxGroup(
            choices=_TASKS["RNA_production"],
            value=_TASKS["RNA_production"],
            label="RNA Production Downstream Tasks.",
            info="Human data.",
            scale=3,
        )
        histone_tasks = gr.CheckboxGroup(
            choices=_TASKS["histone_marks"],
            value=_TASKS["histone_marks"],
            label="Histone Modification Downstream Tasks.",
            info="Human data.",
            scale=4,
        )

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… Leaderboard", elem_id="od-benchmark-tab-table", id=0):
            dataframe = gr.components.Dataframe(
                elem_id="leaderboard-table",
            )

        with gr.TabItem("πŸ“ˆ Graph", elem_id="od-benchmark-tab-table", id=2):
            bar_plot = gr.BarPlot(
                elem_id="leaderboard-bar-plot",
                x="Models",
                y="Score",
            )

        with gr.TabItem("ℹ️ Methods", elem_id="od-benchmark-tab-table", id=1):
            gr.Markdown(_METHODS_TEXT, elem_classes="markdown-text")

    gr.Markdown(f"Last updated on **{_LAST_UPDATED}**", elem_classes="markdown-text")

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            gr.Textbox(
                value=_BIBTEX,
                lines=7,
                label="Copy the BibTeX snippet to cite this source",
                elem_id="citation-button",
                show_copy_button=True
            )

    histone_tasks.change(
        get_dataset,
        inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
        outputs=dataframe,
    )
    regulatory_tasks.change(
        get_dataset,
        inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
        outputs=dataframe,
    )
    rna_tasks.change(
        get_dataset,
        inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
        outputs=dataframe,
    )
    metric_choice.change(
        get_dataset,
        inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
        outputs=dataframe,
    )
    aggr_choice.change(
        get_dataset,
        inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
        outputs=dataframe,
    )
    demo.load(
        fn=get_dataset,
        inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
        outputs=dataframe,
    )

    histone_tasks.change(
        get_bar_plot,
        inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
        outputs=bar_plot,
    )
    regulatory_tasks.change(
        get_bar_plot,
        inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
        outputs=bar_plot,
    )
    rna_tasks.change(
        get_bar_plot,
        inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
        outputs=bar_plot,
    )
    metric_choice.change(
        get_bar_plot,
        inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
        outputs=bar_plot,
    )
    aggr_choice.change(
        get_bar_plot,
        inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
        outputs=bar_plot,
    )
    demo.load(
        fn=get_bar_plot,
        inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
        outputs=bar_plot,
    )

demo.launch()