File size: 12,908 Bytes
99b0244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
from openai import OpenAI
from dotenv import load_dotenv
import os
import threading
import time
import gradio as gr
from lang import LANGUAGE_CONFIG

# 环境变量预校验
load_dotenv(override=True)
required_env_vars = ["API_KEY", "API_URL", "API_MODEL"]
missing_vars = [var for var in required_env_vars if not os.getenv(var)]
if missing_vars:
    raise EnvironmentError(f"Missing required environment variables: {', '.join(missing_vars)}")


class AppConfig:
    DEFAULT_THROUGHPUT = 10
    SYNC_THRESHOLD_DEFAULT = 0
    API_TIMEOUT = 20
    LOADING_DEFAULT = "✅ Ready! <br> Think together with AI. Use Shift+Enter to toggle generation"

class DynamicState:
    """动态UI状态"""
    def __init__(self):
        self.should_stream = False
        self.stream_completed = False
        self.in_cot = True
        self.current_language = "en"

    def control_button_handler(self):
        """切换流式传输状态"""
        if self.should_stream:
            self.should_stream = False
        else:
            self.stream_completed = False
            self.should_stream = True
        return self.ui_state_controller()
    
    def ui_state_controller(self):
        """生成动态UI组件状态"""
        print("UPDATE UI!!")
        # [control_button, status_indicator,  thought_editor, reset_button]
        lang_data = LANGUAGE_CONFIG[self.current_language]
        control_value = lang_data["pause_btn"] if self.should_stream else lang_data["generate_btn"]
        control_variant = "secondary" if self.should_stream else "primary"
        status_value = lang_data["completed"] if self.stream_completed else lang_data["interrupted"]
        return (
            gr.update(
                value=control_value,
                variant=control_variant
            ),
            gr.update(
                value=status_value,
            ),
            gr.update(),
            gr.update(interactive = not self.should_stream)
        )
    def reset_workspace(self):
        """重置工作区状态"""
        self.stream_completed = False
        self.should_stream = False
        self.in_cot = True
        return self.ui_state_controller() + ("", "", LANGUAGE_CONFIG["en"]["bot_default"])
    
class CoordinationManager:
    """管理人类与AI的协同节奏"""
    def __init__(self, paragraph_threshold, initial_content):
        self.paragraph_threshold = paragraph_threshold
        self.initial_paragraph_count = initial_content.count("\n\n")
        self.triggered = False

    def should_pause_for_human(self, current_content):
        if self.paragraph_threshold <= 0 or self.triggered:
            return False

        current_paragraphs = current_content.count("\n\n")
        if current_paragraphs - self.initial_paragraph_count >= self.paragraph_threshold:
            self.triggered = True
            return True
        return False


class ConvoState:
    """State of current ROUND of convo"""
    def __init__(self):
        self.throughput = AppConfig.DEFAULT_THROUGHPUT
        self.sync_threshold = AppConfig.SYNC_THRESHOLD_DEFAULT
        self.current_language = "en"
        self.convo = []
        self.initialize_new_round()

    def initialize_new_round(self):
        self.current = {}
        self.current["user"] = ""
        self.current["cot"] = ""
        self.current["result"] = ""
        self.convo.append(self.current)

    
    def flatten_output(self):
        output = []
        for round in self.convo:
            output.append({"role": "user", "content": round["user"]})
            if len(round["cot"])>0:
                output.append({"role": "assistant", "content": round["cot"], "metadata":{"title": f"Chain of Thought"}})
            if len(round["result"])>0:
                output.append({"role": "assistant", "content": round["result"]})
        return output

    def generate_ai_response(self, user_prompt, current_content, dynamic_state):
        lang_data = LANGUAGE_CONFIG[self.current_language]
        dynamic_state.stream_completed = False
        full_response = current_content
        api_client = OpenAI(
            api_key=os.getenv("API_KEY"),
            base_url=os.getenv("API_URL"),
            timeout=AppConfig.API_TIMEOUT
        )
        coordinator = CoordinationManager(self.sync_threshold, current_content)

        try:
            messages = [
                {"role": "user", "content": user_prompt},
                {"role": "assistant", "content": f"<think>\n{current_content}", "prefix": True}
            ]
            self.current["user"] = user_prompt
            response_stream = api_client.chat.completions.create(
                model=os.getenv("API_MODEL"),
                messages=messages,
                stream=True,
                timeout=AppConfig.API_TIMEOUT
            )
            for chunk in response_stream:
                chunk_content = chunk.choices[0].delta.content
                if coordinator.should_pause_for_human(full_response):
                    dynamic_state.should_stream = False
                if not dynamic_state.should_stream:
                    break
                
                if chunk_content:
                    full_response += chunk_content
                    # Update Convo State
                    think_complete = "</think>" in full_response
                    dynamic_state.in_cot = not think_complete
                    if think_complete:
                        self.current["cot"], self.current["result"] = full_response.split("</think>")
                    else:
                        self.current["cot"], self.current["result"]  = (full_response, "")
                    status = lang_data["loading_thinking"] if dynamic_state.in_cot else lang_data["loading_output"]
                    yield full_response, status, self.flatten_output()

                    interval = 1.0 / self.throughput
                    start_time = time.time()
                    while (time.time() - start_time) < interval and dynamic_state.should_stream:
                        time.sleep(0.005)

        except Exception as e:
            error_msg = LANGUAGE_CONFIG[self.current_language].get("error", "Error")
            full_response += f"\n\n[{error_msg}: {str(e)}]"
            yield full_response, error_msg, status, self.flatten_output() + [{"role":"assistant","content": error_msg, "metadata":{"title": f"❌Error"}}]

        finally:
            dynamic_state.should_stream = False
            if "status" not in locals():
                status = "Whoops... ERROR"
            if 'response_stream' in locals():
                response_stream.close()
            yield full_response, status, self.flatten_output()


def update_interface_language(selected_lang, convo_state, dynamic_state):
    """更新界面语言配置"""
    convo_state.current_language = selected_lang
    dynamic_state.current_language = selected_lang
    lang_data = LANGUAGE_CONFIG[selected_lang]
    return [
        gr.update(value=f"{lang_data['title']}"),
        gr.update(label=lang_data["prompt_label"], placeholder=lang_data["prompt_placeholder"]),
        gr.update(label=lang_data["editor_label"], placeholder=lang_data["editor_placeholder"]),
        gr.update(label=lang_data["sync_threshold_label"], info=lang_data["sync_threshold_info"]),
        gr.update(label=lang_data["throughput_label"], info=lang_data["throughput_info"]),
        gr.update(
            value=lang_data["pause_btn"] if dynamic_state.should_stream else lang_data["generate_btn"],
            variant="secondary" if dynamic_state.should_stream else "primary"
        ),
        gr.update(label=lang_data["language_label"]),
        gr.update(value=lang_data["clear_btn"], interactive = not dynamic_state.should_stream),
        gr.update(value=lang_data["introduction"]),
        gr.update(value=lang_data["bot_default"]),
    ]



theme = gr.themes.Base(font="system-ui", primary_hue="stone")

with gr.Blocks(theme=theme, css_paths="styles.css") as demo:
    convo_state = gr.State(ConvoState)
    dynamic_state = gr.State(DynamicState) # DynamicState is now a separate state

    with gr.Row(variant=""):
        title_md = gr.Markdown(f"## {LANGUAGE_CONFIG['en']['title']}", container=False)
        lang_selector = gr.Dropdown(
            choices=["en", "zh"], 
            value="en",
            elem_id="compact_lang_selector",
            scale=0,
            container=False
        )
    
    with gr.Row(equal_height=True):
        # 对话面板
        with gr.Column(scale=1, min_width=500):
            chatbot = gr.Chatbot(type="messages", height=300, 
                                 value=LANGUAGE_CONFIG['en']['bot_default'],
                                 group_consecutive_messages=False,
                                 show_copy_all_button=True,
                                 show_share_button=True,
                                 )
            prompt_input = gr.Textbox(
                label=LANGUAGE_CONFIG["en"]["prompt_label"],
                lines=2,
                placeholder=LANGUAGE_CONFIG["en"]["prompt_placeholder"],
                max_lines=5,
            )
            with gr.Row():
                control_button = gr.Button(
                    value=LANGUAGE_CONFIG["en"]["generate_btn"],
                    variant="primary"
                )
                next_turn_btn = gr.Button(
                    value=LANGUAGE_CONFIG["en"]["clear_btn"],
                    interactive=True
                )
            status_indicator = gr.Markdown(AppConfig.LOADING_DEFAULT)
            intro_md = gr.Markdown(LANGUAGE_CONFIG["en"]["introduction"], visible=False)
        
        # 思考编辑面板
        with gr.Column(scale=1, min_width=400):
            thought_editor = gr.Textbox(
                label=LANGUAGE_CONFIG["en"]["editor_label"],
                lines=16,
                placeholder=LANGUAGE_CONFIG["en"]["editor_placeholder"],
                autofocus=True,
                elem_id="editor"
            )
            with gr.Row():
                sync_threshold_slider = gr.Slider(
                    minimum=0,
                    maximum=20,
                    value=AppConfig.SYNC_THRESHOLD_DEFAULT,
                    step=1,
                    label=LANGUAGE_CONFIG["en"]["sync_threshold_label"],
                    info=LANGUAGE_CONFIG["en"]["sync_threshold_info"]
                )
                throughput_control = gr.Slider(
                    minimum=1,
                    maximum=100,
                    value=AppConfig.DEFAULT_THROUGHPUT,
                    step=1,
                    label=LANGUAGE_CONFIG["en"]["throughput_label"],
                    info=LANGUAGE_CONFIG["en"]["throughput_info"]
                )

    # 交互逻辑

    stateful_ui = (control_button, status_indicator,  thought_editor, next_turn_btn)

    throughput_control.change(
        lambda val, s: setattr(s, "throughput", val),
        [throughput_control, convo_state],
        None,
        queue=False
        )

    sync_threshold_slider.change(
        lambda val, s: setattr(s, "sync_threshold", val),
        [sync_threshold_slider, convo_state],
        None,
        queue=False
    )

    def wrap_stream_generator(convo_state, dynamic_state, prompt, content): # Pass dynamic_state here
        for response in convo_state.generate_ai_response(prompt, content, dynamic_state): # Pass dynamic_state to generate_ai_response
            yield response

    gr.on(   #主按钮trigger
        [control_button.click, prompt_input.submit, thought_editor.submit],
        lambda d: d.control_button_handler(), # Pass dynamic_state to control_button_handler
        [dynamic_state],
        stateful_ui,
        show_progress=False
    ).then(  #生成事件
        wrap_stream_generator, # Pass both states
        [convo_state, dynamic_state, prompt_input, thought_editor],
        [thought_editor, status_indicator, chatbot],
        concurrency_limit=100
    ).then(  #生成终止后UI状态判断
        lambda d: d.ui_state_controller(), # Pass dynamic_state to ui_state_controller
        [dynamic_state],
        stateful_ui,
        show_progress=False,
    )

    next_turn_btn.click(
        lambda d: d.reset_workspace(), # Pass dynamic_state to reset_workspace
        [dynamic_state],
        stateful_ui + (thought_editor, prompt_input, chatbot),
        queue=False
    )

    lang_selector.change(
        lambda lang, s, d: update_interface_language(lang, s, d), # Pass dynamic_state to update_interface_language
        [lang_selector, convo_state, dynamic_state],
        [title_md, prompt_input, thought_editor, sync_threshold_slider,
         throughput_control, control_button, lang_selector, next_turn_btn, intro_md, chatbot],
         queue=False
    )

if __name__ == "__main__":
    demo.queue(default_concurrency_limit=10000)
    demo.launch()