import os
import gradio as gr
from anthropic import Anthropic
from pypdf import PdfReader
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# Set up Anthropic API key in HF secrets
ANTHROPIC_API_KEY = os.getenv('ANTHROPIC_API_KEY')
os.environ["ANTHROPIC_API_KEY"] = ANTHROPIC_API_KEY
# Set up username and password in HF secrets
username = os.getenv('username')
password = os.getenv('password')
# Function to chunk the document
def chunk_text(text, chunk_size=1000, overlap=100):
chunks = []
start = 0
while start < len(text):
end = start + chunk_size
chunk = text[start:end]
chunks.append(chunk)
start = end - overlap
return chunks
# Function to find the most relevant chunks
def get_relevant_chunks(query, chunks, top_n=3):
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(chunks + [query])
cosine_similarities = cosine_similarity(tfidf_matrix[-1], tfidf_matrix[:-1]).flatten()
relevant_indices = cosine_similarities.argsort()[-top_n:][::-1]
return [chunks[i] for i in relevant_indices]
# Function to process multiple PDFs
def process_pdfs(pdf_files):
all_chunks = []
for pdf_file in pdf_files:
reader = PdfReader(pdf_file)
full_text = ''.join(page.extract_text() for page in reader.pages)
chunks = chunk_text(full_text)
all_chunks.extend(chunks)
return all_chunks
# Add the paths to your desired knowledge base PDFs
reference_documents = ["Louis XIV.pdf"]
text_chunks = process_pdfs(reference_documents)
instructions = os.getenv('INSTRUCTIONS')
def chat_with_assistant(message, history):
# Find relevant chunks based on the user message
relevant_chunks = get_relevant_chunks(message, text_chunks)
context = "\n".join(relevant_chunks)
# Prepare the system message
system_message = f"""You are an impersonator and an educator.
Your role is to adopt the personality, style, psychology, ideas, background, and circumstances of a historical figure.
Your goal is to help students understand the historical figure better through and engaging conversation.
Your assigned historical figure is stated in your instructions:
{instructions}
Use the following as context for your answers.
{context}
However, use it seamlessly as background knowledge for a lively discussion and combine it with your own information. Do not provide citations or adopt a Q&A or academic tone.
Always use appropriate language.
Refuse to answer inappropriate questions or questions unrelated to your role and historical figure.
Important: Your knowledge of the world ends at the time of the death of your historical figure.
"""
# Prepare the message array
messages = []
# Add conversation history
for human_msg, ai_msg in history:
messages.append({"role": "user", "content": human_msg})
messages.append({"role": "assistant", "content": ai_msg})
# Add the current user message
messages.append({"role": "user", "content": message})
# Create Anthropic client
client = Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"])
# Make the API call
response = client.messages.create(
model="claude-3-5-sonnet-20240620",
max_tokens=350,
system=system_message,
messages=messages
)
return response.content[0].text.strip()
# CSS for a blue-themed style
isp_theme = gr.themes.Default().set(
body_background_fill="#E6F3FF", # Light blue background
block_background_fill="#FFFFFF", # White for input blocks
block_title_text_color="#003366", # Dark blue for text
block_label_background_fill="#B8D8FF", # Light blue for labels
input_background_fill="#FFFFFF", # White for input fields
button_primary_background_fill="#0066CC", # Medium blue for primary buttons
button_primary_background_fill_hover="#0052A3", # Darker blue for hover
button_primary_text_color="#FFFFFF", # White text on buttons
button_secondary_background_fill="#B8D8FF", # Light blue for secondary buttons
button_secondary_background_fill_hover="#99C2FF", # Slightly darker blue for hover
button_secondary_text_color="#003366", # Dark blue text for secondary buttons
block_border_width="1px",
block_border_color="#0066CC", # Medium blue border
)
# Custom CSS for logo positioning and disclaimer footer
custom_css = """
#logo-img {
position: absolute;
top: 20px;
right: 20px;
width: 200px;
height: auto;
z-index: 1000;
}
#disclaimer-footer {
width: 100%;
background-color: #B8D8FF;
color: #003366;
text-align: center;
padding: 10px 0;
font-size: 14px;
border-top: 1px solid #0066CC;
margin-top: 20px;
}
.container {
max-width: 800px;
margin: 0 auto;
padding: 20px;
position: relative;
padding-top: 60px;
}
.title {
color: #003366;
margin-bottom: 10px;
}
.chatbot {
border: none; /* Remove the blue border */
border-radius: 5px;
padding: 5px; /* Reduce padding around the chat area */
margin-bottom: 15px;
}
.button-row {
display: flex;
gap: 10px;
margin-bottom: 15px;
}
/* Remove borders and shadows from chat bubbles */
.chatbot .message,
.chatbot .message::before,
.chatbot .message::after {
border: none !important;
box-shadow: none !important;
}
.chatbot .message > div {
border: none !important;
box-shadow: none !important;
}
/* Adjust padding, margin, and width for chat bubbles */
.chatbot .message-content {
padding: 5px 10px; /* Smaller padding for better sizing */
margin-bottom: 8px; /* Space between messages */
max-width: 70%; /* Restrict maximum width for better appearance */
word-wrap: break-word; /* Ensure text wraps properly */
}
.chatbot .message-bubble {
background-color: #FFFFFF; /* Ensure background is white */
border-radius: 8px; /* Rounded corners for messages */
box-sizing: border-box; /* Ensure padding is included in width */
display: inline-block; /* Align the bubble content properly */
}
"""
# Environment variables
assistant_avatar = os.getenv('AVATAR')
assistant_title = os.getenv('TITLE')
assistant_logo = os.getenv('LOGO')
# Gradio interface using Blocks
with gr.Blocks(theme=isp_theme, css=custom_css) as iface:
with gr.Column(elem_classes="container"):
with gr.Row():
# Logo and Title
gr.HTML(
f"""