Spaces:
Sleeping
Sleeping
File size: 4,918 Bytes
779eb61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import os
import asyncio
import logging
from dotenv import load_dotenv
from langchain.prompts import PromptTemplate
from langchain_community.vectorstores import Qdrant
from langchain.chains import RetrievalQA
from langchain_groq import ChatGroq
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
from langchain_experimental.text_splitter import SemanticChunker
from qdrant_client import QdrantClient
from qdrant_client.http import models as rest
from langchain_community.document_loaders import PyPDFDirectoryLoader
import gradio as gr
# Set up logging
logging.basicConfig(filename='app.log', level=logging.ERROR, format='%(asctime)s %(levelname)s %(message)s')
load_dotenv()
# Environment variables
api_key = os.getenv('API_KEY1')
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
qdurl = os.getenv("QDURL")
# Initialize Qdrant Client
try:
client = QdrantClient(
url=qdurl,
port=6333,
verify=False,
api_key=api_key,
)
collections = client.get_collections()
except Exception as e:
print("An error occurred: %s", e)
if "server engine not running" in str(e).lower():
print("The database engine is not running. Please check the server status.")
exit()
print("Database loaded")
# Initialize embeddings and database
hf = FastEmbedEmbeddings(model_name="nomic-ai/nomic-embed-text-v1.5-Q")
db = Qdrant(
client=client,
embeddings=hf,
collection_name="RR2"
)
load_vector_store = db
retriever = load_vector_store.as_retriever(search_kwargs={"k":3})
llm = ChatGroq(temperature=0, model_name="llama3-8b-8192")
# Collection Management Functions
async def create_collection(url, port, collection_name, vector_size):
try:
client = QdrantClient(
url=url,
port=int(port),
api_key=api_key,
verify=False,
)
client.recreate_collection(
collection_name=collection_name,
vectors_config=rest.VectorParams(
size=int(vector_size),
distance=rest.Distance.COSINE,
)
)
return "Collection created successfully."
except Exception as e:
return f"Failed to create collection: {str(e)}"
# Data Processing Function
async def data_ingest_function(data_path, url, collection_name):
loop = asyncio.get_event_loop()
try:
def load_documents():
loader = PyPDFDirectoryLoader(data_path)
hf = FastEmbedEmbeddings(model_name="nomic-ai/nomic-embed-text-v1.5-Q")
text_splitter = SemanticChunker(hf, breakpoint_threshold_type="interquartile")
documents = loader.load_and_split(text_splitter=text_splitter)
return documents
texts = await loop.run_in_executor(None, load_documents)
print(f"Processed {len(texts)} text chunks")
def index_documents():
qdrant = Qdrant.from_documents(
texts,
hf,
url=url,
api_key=api_key,
collection_name=collection_name
)
return qdrant
await loop.run_in_executor(None, index_documents)
return "Data processing and indexing completed successfully."
except Exception as e:
return f"Failed to process data: {str(e)}"
# Gradio Admin Interface
with gr.Blocks(theme="soft", title="Admin LLM System", head="Admin for LARGE LANGUAGE MODEL SYSTEM") as admin:
with gr.Tab("Collection Management"):
with gr.Row():
url_input = gr.Textbox(label="Qdrant URL", value="")
port_input = gr.Number(label="Port", value=6333)
collection_name_input = gr.Textbox(label="Collection Name", value="RR2")
vector_size_input = gr.Number(label="Vector Size", value=768)
create_collection_btn = gr.Button("Create Collection")
create_collection_btn.click(
create_collection,
inputs=[url_input, port_input, collection_name_input, vector_size_input],
outputs=gr.Textbox(label="Result")
)
with gr.Row():
data_path_input = gr.Textbox(label="Data Folder Path")
url_processing_input = gr.Textbox(label="Qdrant URL for Processing", value="")
collection_name_processing_input = gr.Textbox(label="Collection Name for Processing", value="RR2")
start_processing_btn = gr.Button("Start Processing")
start_processing_btn.click(
data_ingest_function,
inputs=[data_path_input, url_processing_input, collection_name_processing_input],
outputs=gr.Textbox(label="Result")
)
# Launch Interface
if __name__ == "__main__":
admin.launch(server_name="0.0.0.0", server_port=7860, share=False) |