Spaces:
Runtime error
Runtime error
Allow Gradio to be accessible when running inside container (#3)
Browse files- Allow Gradio to be accessible when running inside container (cbe4686e15637c65111bd0f94fee239c114d8750)
Co-authored-by: Jahangir <[email protected]>
app.py
CHANGED
@@ -11,13 +11,14 @@ import logging
|
|
11 |
import json
|
12 |
import os
|
13 |
import re
|
|
|
14 |
|
15 |
import pandas as pd
|
16 |
|
17 |
-
import importlib
|
18 |
modeling_MERT = importlib.import_module("MERT-v1-95M.modeling_MERT")
|
19 |
|
20 |
-
from Prediction_Head.MTGGenre_head import MLPProberBase
|
21 |
# input cr: https://huggingface.co/spaces/thealphhamerc/audio-to-text/blob/main/app.py
|
22 |
|
23 |
|
@@ -33,12 +34,12 @@ logger.addHandler(ch)
|
|
33 |
|
34 |
|
35 |
inputs = [
|
36 |
-
gr.components.Audio(type="filepath", label="Add music audio file"),
|
37 |
]
|
38 |
|
39 |
title = "Isai - toward better music understanding"
|
40 |
description = "This space uses MERT-95M model to peform various music information retrieval tasks."
|
41 |
-
|
42 |
audio_examples = [
|
43 |
["samples/143.mp3"],
|
44 |
["samples/205.mp3"],
|
@@ -78,7 +79,7 @@ MERT_BEST_LAYER_IDX = {
|
|
78 |
'NSynthP': 1,
|
79 |
'VocalSetS': 2,
|
80 |
'VocalSetT': 9,
|
81 |
-
}
|
82 |
|
83 |
MERT_BEST_LAYER_IDX = {
|
84 |
'EMO': 5,
|
@@ -93,7 +94,7 @@ MERT_BEST_LAYER_IDX = {
|
|
93 |
'NSynthP': 1,
|
94 |
'VocalSetS': 2,
|
95 |
'VocalSetT': 9,
|
96 |
-
}
|
97 |
CLASSIFIERS = {
|
98 |
|
99 |
}
|
@@ -135,7 +136,7 @@ def model_infernce(inputs):
|
|
135 |
# print(f'setting rate from {sample_rate} to {resample_rate}')
|
136 |
resampler = T.Resample(sample_rate, resample_rate)
|
137 |
waveform = resampler(waveform)
|
138 |
-
|
139 |
waveform = waveform.view(-1,) # make it (n_sample, )
|
140 |
model_inputs = processor(waveform, sampling_rate=resample_rate, return_tensors="pt")
|
141 |
model_inputs.to(device)
|
@@ -159,12 +160,12 @@ def model_infernce(inputs):
|
|
159 |
else:
|
160 |
logits = CLASSIFIERS[task](all_layer_hidden_states[:, MERT_BEST_LAYER_IDX[task]])
|
161 |
# print(f'task {task} logits:', logits.shape, 'num class:', num_class)
|
162 |
-
|
163 |
-
sorted_idx = torch.argsort(logits, dim = -1, descending=True)[0] # batch =1
|
164 |
sorted_prob,_ = torch.sort(nn.functional.softmax(logits[0], dim=-1), dim=-1, descending=True)
|
165 |
# print(sorted_prob)
|
166 |
# print(sorted_prob.shape)
|
167 |
-
|
168 |
top_n_show = 5 if num_class >= 5 else num_class
|
169 |
# task_output_texts = task_output_texts + f"TASK {task} output:\n" + "\n".join([str(ID2CLASS[task][str(sorted_idx[idx].item())])+f', probability: {sorted_prob[idx].item():.2%}' for idx in range(top_n_show)]) + '\n'
|
170 |
# task_output_texts = task_output_texts + '----------------------\n'
|
@@ -185,17 +186,17 @@ def model_infernce(inputs):
|
|
185 |
df_objects.append(row_elements)
|
186 |
df = pd.DataFrame(df_objects, columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
|
187 |
return df
|
188 |
-
|
189 |
def convert_audio(inputs, microphone):
|
190 |
if (microphone is not None):
|
191 |
inputs = microphone
|
192 |
-
df = model_infernce(inputs)
|
193 |
return df
|
194 |
|
195 |
def live_convert_audio(microphone):
|
196 |
if (microphone is not None):
|
197 |
inputs = microphone
|
198 |
-
df = model_infernce(inputs)
|
199 |
return df
|
200 |
|
201 |
audio_chunked = gr.Interface(
|
@@ -228,11 +229,13 @@ audio_chunked = gr.Interface(
|
|
228 |
# [
|
229 |
# audio_chunked,
|
230 |
# live_audio_chunked,
|
231 |
-
# ],
|
232 |
# [
|
233 |
# "Audio File or Recording",
|
234 |
# "Live Streaming Music"
|
235 |
# ]
|
236 |
# )
|
237 |
# demo.queue(concurrency_count=1, max_size=5)
|
238 |
-
|
|
|
|
|
|
11 |
import json
|
12 |
import os
|
13 |
import re
|
14 |
+
import os
|
15 |
|
16 |
import pandas as pd
|
17 |
|
18 |
+
import importlib
|
19 |
modeling_MERT = importlib.import_module("MERT-v1-95M.modeling_MERT")
|
20 |
|
21 |
+
from Prediction_Head.MTGGenre_head import MLPProberBase
|
22 |
# input cr: https://huggingface.co/spaces/thealphhamerc/audio-to-text/blob/main/app.py
|
23 |
|
24 |
|
|
|
34 |
|
35 |
|
36 |
inputs = [
|
37 |
+
gr.components.Audio(type="filepath", label="Add music audio file"),
|
38 |
]
|
39 |
|
40 |
title = "Isai - toward better music understanding"
|
41 |
description = "This space uses MERT-95M model to peform various music information retrieval tasks."
|
42 |
+
|
43 |
audio_examples = [
|
44 |
["samples/143.mp3"],
|
45 |
["samples/205.mp3"],
|
|
|
79 |
'NSynthP': 1,
|
80 |
'VocalSetS': 2,
|
81 |
'VocalSetT': 9,
|
82 |
+
}
|
83 |
|
84 |
MERT_BEST_LAYER_IDX = {
|
85 |
'EMO': 5,
|
|
|
94 |
'NSynthP': 1,
|
95 |
'VocalSetS': 2,
|
96 |
'VocalSetT': 9,
|
97 |
+
}
|
98 |
CLASSIFIERS = {
|
99 |
|
100 |
}
|
|
|
136 |
# print(f'setting rate from {sample_rate} to {resample_rate}')
|
137 |
resampler = T.Resample(sample_rate, resample_rate)
|
138 |
waveform = resampler(waveform)
|
139 |
+
|
140 |
waveform = waveform.view(-1,) # make it (n_sample, )
|
141 |
model_inputs = processor(waveform, sampling_rate=resample_rate, return_tensors="pt")
|
142 |
model_inputs.to(device)
|
|
|
160 |
else:
|
161 |
logits = CLASSIFIERS[task](all_layer_hidden_states[:, MERT_BEST_LAYER_IDX[task]])
|
162 |
# print(f'task {task} logits:', logits.shape, 'num class:', num_class)
|
163 |
+
|
164 |
+
sorted_idx = torch.argsort(logits, dim = -1, descending=True)[0] # batch =1
|
165 |
sorted_prob,_ = torch.sort(nn.functional.softmax(logits[0], dim=-1), dim=-1, descending=True)
|
166 |
# print(sorted_prob)
|
167 |
# print(sorted_prob.shape)
|
168 |
+
|
169 |
top_n_show = 5 if num_class >= 5 else num_class
|
170 |
# task_output_texts = task_output_texts + f"TASK {task} output:\n" + "\n".join([str(ID2CLASS[task][str(sorted_idx[idx].item())])+f', probability: {sorted_prob[idx].item():.2%}' for idx in range(top_n_show)]) + '\n'
|
171 |
# task_output_texts = task_output_texts + '----------------------\n'
|
|
|
186 |
df_objects.append(row_elements)
|
187 |
df = pd.DataFrame(df_objects, columns=['Task', 'Top 1', 'Top 2', 'Top 3', 'Top 4', 'Top 5'])
|
188 |
return df
|
189 |
+
|
190 |
def convert_audio(inputs, microphone):
|
191 |
if (microphone is not None):
|
192 |
inputs = microphone
|
193 |
+
df = model_infernce(inputs)
|
194 |
return df
|
195 |
|
196 |
def live_convert_audio(microphone):
|
197 |
if (microphone is not None):
|
198 |
inputs = microphone
|
199 |
+
df = model_infernce(inputs)
|
200 |
return df
|
201 |
|
202 |
audio_chunked = gr.Interface(
|
|
|
229 |
# [
|
230 |
# audio_chunked,
|
231 |
# live_audio_chunked,
|
232 |
+
# ],
|
233 |
# [
|
234 |
# "Audio File or Recording",
|
235 |
# "Live Streaming Music"
|
236 |
# ]
|
237 |
# )
|
238 |
# demo.queue(concurrency_count=1, max_size=5)
|
239 |
+
|
240 |
+
server_name = os.environ.get('GRADIO_SERVER_NAME', "127.0.0.1")
|
241 |
+
audio_chunked.launch(server_name=server_name, show_api=False)
|