Ivan Tan
commited on
Commit
·
c073aa2
1
Parent(s):
19c813f
Init repo with app, data and models
Browse files- .gitattributes +1 -0
- app.py +298 -0
- t5-v1_1-base_tia/config.json +31 -0
- t5-v1_1-base_tia/pytorch_model.bin +3 -0
- train.csv +3 -0
.gitattributes
CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
train.csv filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[10]:
|
5 |
+
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
import os
|
9 |
+
import torch
|
10 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
11 |
+
from transformers.optimization import Adafactor
|
12 |
+
import time
|
13 |
+
import warnings
|
14 |
+
import random
|
15 |
+
warnings.filterwarnings('ignore')
|
16 |
+
|
17 |
+
import re
|
18 |
+
|
19 |
+
def strip_html(text):
|
20 |
+
return re.sub('<[^<]+?>', '', text)
|
21 |
+
|
22 |
+
|
23 |
+
# In[5]:
|
24 |
+
|
25 |
+
|
26 |
+
train_columns = ['round_amount', 'round_date', 'stage', 'investee',
|
27 |
+
'investee_description', 'investee_country', 'investee_region',
|
28 |
+
'investee_subregion', 'investee_vertical', 'investee_industry',
|
29 |
+
'investor_list', 'previous_investors', 'prior_funding']
|
30 |
+
train = pd.read_csv("train.csv")
|
31 |
+
|
32 |
+
|
33 |
+
# In[6]:
|
34 |
+
|
35 |
+
|
36 |
+
train.publication_timestamp = pd.to_datetime(train.publication_timestamp)
|
37 |
+
|
38 |
+
|
39 |
+
# In[7]:
|
40 |
+
|
41 |
+
|
42 |
+
input_text = train[train_columns].to_dict(orient='records')
|
43 |
+
train_df = train[['title']].rename(columns={'title':'target_text'})
|
44 |
+
train_df['input_text'] = input_text
|
45 |
+
train_df['prefix'] = 'tia'
|
46 |
+
train_df.input_text = train_df.input_text.astype(str)
|
47 |
+
|
48 |
+
|
49 |
+
# In[8]:
|
50 |
+
|
51 |
+
|
52 |
+
if torch.cuda.is_available():
|
53 |
+
dev = torch.device("cuda:0")
|
54 |
+
print("Running on the GPU")
|
55 |
+
else:
|
56 |
+
dev = torch.device("cpu")
|
57 |
+
print("Running on the CPU")
|
58 |
+
|
59 |
+
|
60 |
+
# In[ ]:
|
61 |
+
|
62 |
+
|
63 |
+
tokenizer = T5Tokenizer.from_pretrained('google/t5-v1_1-base')
|
64 |
+
model = T5ForConditionalGeneration.from_pretrained('t5-v1_1-base_tia/', local_files_only=True)
|
65 |
+
#moving the model to device(GPU/CPU)
|
66 |
+
model.to(dev)
|
67 |
+
|
68 |
+
|
69 |
+
# In[12]:
|
70 |
+
|
71 |
+
|
72 |
+
vi_table = train[['investee_industry', 'investee_vertical']].drop_duplicates()
|
73 |
+
|
74 |
+
|
75 |
+
# In[13]:
|
76 |
+
|
77 |
+
|
78 |
+
def update_industry(value):
|
79 |
+
verticals = list(vi_table[vi_table['investee_industry'] == value]['investee_vertical'].values)
|
80 |
+
return verticals[0]
|
81 |
+
|
82 |
+
def update_vertical(value):
|
83 |
+
industries = list(vi_table[vi_table['investee_vertical'] == value]['investee_industry'].values)
|
84 |
+
return industries[0]
|
85 |
+
|
86 |
+
|
87 |
+
# In[ ]:
|
88 |
+
|
89 |
+
|
90 |
+
update_industry('Green')
|
91 |
+
|
92 |
+
|
93 |
+
# In[ ]:
|
94 |
+
|
95 |
+
|
96 |
+
update_vertical('Clean tech')
|
97 |
+
|
98 |
+
|
99 |
+
# In[ ]:
|
100 |
+
|
101 |
+
|
102 |
+
import gradio as gr
|
103 |
+
|
104 |
+
|
105 |
+
# In[ ]:
|
106 |
+
|
107 |
+
|
108 |
+
num_return_sequences = 5
|
109 |
+
|
110 |
+
|
111 |
+
# In[ ]:
|
112 |
+
|
113 |
+
|
114 |
+
def generate_headline(stage, investee_country, investee_subregion, investee_region,
|
115 |
+
investee_vertical, investee_industry,
|
116 |
+
round_amount, investee, investee_description, investor_list, previous_investors,
|
117 |
+
other_values):
|
118 |
+
|
119 |
+
full_df = other_values.set_index("key").T
|
120 |
+
|
121 |
+
full_df['stage'] = stage
|
122 |
+
full_df['investee_country'] = investee_country
|
123 |
+
full_df['investee_subregion'] = investee_subregion
|
124 |
+
full_df['investee_region'] = investee_region
|
125 |
+
full_df['investee_vertical'] = investee_vertical
|
126 |
+
full_df['investee_industry'] = investee_industry
|
127 |
+
full_df['round_amount'] = str(float(round_amount))
|
128 |
+
full_df['investee'] = investee
|
129 |
+
full_df['investee_description'] = investee_description
|
130 |
+
full_df['investor_list'] = investor_list
|
131 |
+
full_df['previous_investors'] = previous_investors
|
132 |
+
|
133 |
+
random_set =full_df[['round_amount', 'round_date', 'stage', 'investee',
|
134 |
+
'investee_description', 'investee_country', 'investee_region',
|
135 |
+
'investee_subregion', 'investee_vertical', 'investee_industry',
|
136 |
+
'investor_list', 'previous_investors', 'prior_funding']].to_json(orient="records")
|
137 |
+
# print(random_set)
|
138 |
+
|
139 |
+
input_ids = tokenizer.encode(f"tia: {{{random_set}}}", return_tensors="pt") # Batch size 1
|
140 |
+
input_ids=input_ids.to(dev)
|
141 |
+
outputs = model.generate(input_ids)
|
142 |
+
# text_output = tokenizer.decode(outputs[0]) # Single output
|
143 |
+
text_outputs = model.generate(inputs=input_ids, do_sample=True,
|
144 |
+
num_beams=2,
|
145 |
+
num_return_sequences=num_return_sequences,
|
146 |
+
repetition_penalty=5.0)
|
147 |
+
outputs = [strip_html(tokenizer.decode(o)) for o in text_outputs]
|
148 |
+
return "\n".join(outputs)
|
149 |
+
|
150 |
+
|
151 |
+
# In[ ]:
|
152 |
+
|
153 |
+
|
154 |
+
other_columns = ['round_date', 'prior_funding']
|
155 |
+
|
156 |
+
|
157 |
+
# In[ ]:
|
158 |
+
|
159 |
+
|
160 |
+
train.sample(1)[other_columns].T.reset_index().values
|
161 |
+
|
162 |
+
|
163 |
+
# In[ ]:
|
164 |
+
|
165 |
+
|
166 |
+
print(train.query("investee == 'NOSH'")['title'].head(1).T)
|
167 |
+
train.query("investee == 'NOSH'")[train_columns].head(1).T
|
168 |
+
|
169 |
+
|
170 |
+
# In[ ]:
|
171 |
+
|
172 |
+
|
173 |
+
fake_data = {
|
174 |
+
"round_amount":1000000.0,
|
175 |
+
"round_date":"2018-09-26",
|
176 |
+
"stage":"Pre-series A",
|
177 |
+
"investee":"NOSH",
|
178 |
+
"investee_description":"NOSH makes and delivers ready-to-eat meals in Hong Kong.",
|
179 |
+
"investee_country":"Hong Kong",
|
180 |
+
"investee_region":"Asia",
|
181 |
+
"investee_subregion":"Eastern Asia",
|
182 |
+
"investee_vertical":"Food tech",
|
183 |
+
"investee_industry":"Restaurants & Food",
|
184 |
+
"investor_list":["Alibaba Entrepreneurs Fund (阿里巴巴创业者基金)"],
|
185 |
+
"previous_investors":"",
|
186 |
+
"prior_funding":1000000.0
|
187 |
+
}
|
188 |
+
|
189 |
+
|
190 |
+
# In[ ]:
|
191 |
+
|
192 |
+
|
193 |
+
pd.DataFrame([fake_data]).T
|
194 |
+
|
195 |
+
|
196 |
+
# In[ ]:
|
197 |
+
|
198 |
+
|
199 |
+
demo = gr.Blocks()
|
200 |
+
|
201 |
+
random_sample = train[train_columns].sample(1)
|
202 |
+
random_sample = pd.DataFrame([fake_data])
|
203 |
+
|
204 |
+
stage = gr.Dropdown(label="stage", choices=list(train[train_columns].stage.unique()))
|
205 |
+
investee_country = gr.Dropdown(label="investee_country", choices=list(train[train_columns].investee_country.unique()),
|
206 |
+
value=random_sample.investee_country.values[0])
|
207 |
+
investee_subregion = gr.Dropdown(label="investee_subregion", choices=list(train[train_columns].investee_subregion.unique()),
|
208 |
+
value=random_sample.investee_subregion.values[0])
|
209 |
+
investee_region = gr.Dropdown(label="investee_region", choices=list(train[train_columns].investee_region.unique()),
|
210 |
+
value=random_sample.investee_region.values[0])
|
211 |
+
investee_vertical = gr.Dropdown(label="investee_vertical", choices=list(train[train_columns].investee_vertical.unique()),
|
212 |
+
value=random_sample.investee_vertical.values[0])
|
213 |
+
investee_industry = gr.Dropdown(label="investee_industry", choices=list(train[train_columns].investee_industry.unique()),
|
214 |
+
value=random_sample.investee_industry.values[0])
|
215 |
+
|
216 |
+
if pd.isnull(random_sample.round_amount.values[0]):
|
217 |
+
rand_amount = 0
|
218 |
+
else:
|
219 |
+
rand_amount = random_sample.round_amount.values[0]
|
220 |
+
|
221 |
+
round_amount = gr.Slider(label="round_amount", minimum=100000, maximum=200000000,
|
222 |
+
value=rand_amount,
|
223 |
+
step=100000)
|
224 |
+
|
225 |
+
investee = gr.Textbox(label="investee", value=random_sample.investee.values[0])
|
226 |
+
investee_description = gr.Textbox(label="investee_description",
|
227 |
+
value=random_sample.investee_description.values[0])
|
228 |
+
investor_list = gr.Textbox(label="investor_list",
|
229 |
+
value=random_sample.investor_list.values[0])
|
230 |
+
previous_investors = gr.Textbox(label="previous_investors",
|
231 |
+
value=random_sample.previous_investors.values[0])
|
232 |
+
other_values = gr.Dataframe(
|
233 |
+
headers=['key', 'value'],
|
234 |
+
value=[['round_date', random_sample.round_date.values[0]],
|
235 |
+
['prior_funding', random_sample.prior_funding.values[0]]]
|
236 |
+
)
|
237 |
+
out = gr.Textbox(max_lines=num_return_sequences)
|
238 |
+
|
239 |
+
with demo:
|
240 |
+
gr.Markdown("Enter funding data to generate news headline.")
|
241 |
+
|
242 |
+
inputs=[stage, investee_country, investee_subregion, investee_region,
|
243 |
+
investee_vertical, investee_industry,
|
244 |
+
round_amount, investee, investee_description, investor_list, previous_investors,
|
245 |
+
other_values]
|
246 |
+
|
247 |
+
investee_industry.change(fn=update_industry, inputs=investee_industry, outputs=investee_vertical)
|
248 |
+
investee_vertical.change(fn=update_vertical, inputs=investee_vertical, outputs=investee_industry)
|
249 |
+
gr.Interface(fn=generate_headline, inputs=inputs, outputs=out, live=True)
|
250 |
+
description="Enter funding data to generate news headline.",
|
251 |
+
live=True
|
252 |
+
|
253 |
+
demo.launch(
|
254 |
+
share=False, auth=("123", "123")
|
255 |
+
)
|
256 |
+
|
257 |
+
|
258 |
+
# In[76]:
|
259 |
+
|
260 |
+
|
261 |
+
demo.close()
|
262 |
+
|
263 |
+
|
264 |
+
# In[77]:
|
265 |
+
|
266 |
+
|
267 |
+
gr.close_all()
|
268 |
+
|
269 |
+
|
270 |
+
# In[ ]:
|
271 |
+
|
272 |
+
|
273 |
+
|
274 |
+
|
275 |
+
|
276 |
+
# In[ ]:
|
277 |
+
|
278 |
+
|
279 |
+
|
280 |
+
|
281 |
+
|
282 |
+
# In[ ]:
|
283 |
+
|
284 |
+
|
285 |
+
|
286 |
+
|
287 |
+
|
288 |
+
# In[ ]:
|
289 |
+
|
290 |
+
|
291 |
+
|
292 |
+
|
293 |
+
|
294 |
+
# In[ ]:
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
|
t5-v1_1-base_tia/config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "google/t5-v1_1-base",
|
3 |
+
"architectures": [
|
4 |
+
"T5ForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"d_ff": 2048,
|
7 |
+
"d_kv": 64,
|
8 |
+
"d_model": 768,
|
9 |
+
"decoder_start_token_id": 0,
|
10 |
+
"dense_act_fn": "gelu_new",
|
11 |
+
"dropout_rate": 0.1,
|
12 |
+
"eos_token_id": 1,
|
13 |
+
"feed_forward_proj": "gated-gelu",
|
14 |
+
"initializer_factor": 1.0,
|
15 |
+
"is_encoder_decoder": true,
|
16 |
+
"is_gated_act": true,
|
17 |
+
"layer_norm_epsilon": 1e-06,
|
18 |
+
"model_type": "t5",
|
19 |
+
"num_decoder_layers": 12,
|
20 |
+
"num_heads": 12,
|
21 |
+
"num_layers": 12,
|
22 |
+
"output_past": true,
|
23 |
+
"pad_token_id": 0,
|
24 |
+
"relative_attention_max_distance": 128,
|
25 |
+
"relative_attention_num_buckets": 32,
|
26 |
+
"tie_word_embeddings": false,
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.20.1",
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 32128
|
31 |
+
}
|
t5-v1_1-base_tia/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15c826dfd8c15a7750d1961a646e49f145d669052224b39ac7f5c698422ba13e
|
3 |
+
size 990406605
|
train.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:999febaa4d0e013cb0c89ba43c657bfdf13d9d7d8e52f4050b64341ff833489d
|
3 |
+
size 34332589
|