Spaces:
Runtime error
Runtime error
# app.py-12-04-2024-19u45m-CET.py | |
# | |
# POE ChatGPT: | |
# To convert the code from a Chainlit app to a Streamlit app, you'll need to make several modifications. | |
# Here's the modified code for a Streamlit app: | |
python | |
Copy | |
import os | |
from typing import List | |
import streamlit as st | |
from langchain_community.embeddings import FastEmbedEmbeddings | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import Chroma | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.document_loaders import PyPDFLoader | |
from langchain_groq import ChatGroq | |
from langchain.prompts.chat import ( | |
ChatPromptTemplate, | |
SystemMessagePromptTemplate, | |
HumanMessagePromptTemplate, | |
) | |
from langchain.docstore.document import Document | |
from langchain.memory import ChatMessageHistory, ConversationBufferMemory | |
st.title("Chat App") | |
st.write("Upload a PDF file to begin!") | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) | |
system_template = """Use the following pieces of context to answer the user's question. | |
If you don't know the answer, just say that you don't know, don't try to make up an answer. | |
ALWAYS return a "SOURCES" part in your answer. | |
The "SOURCES" part should be a reference to the source of the document from which you got your answer. | |
And if the user greets with greetings like Hi, hello, How are you, etc reply accordingly as well. | |
Example of your response should be: | |
The answer is foo | |
SOURCES: xyz | |
Begin! | |
---------------- | |
{summaries}""" | |
messages = [ | |
SystemMessagePromptTemplate.from_template(system_template), | |
HumanMessagePromptTemplate.from_template("{question}"), | |
] | |
prompt = ChatPromptTemplate.from_messages(messages) | |
chain_type_kwargs = {"prompt": prompt} | |
def process_file(file): | |
with open(file.name, "wb") as f: | |
f.write(file.read()) | |
pypdf_loader = PyPDFLoader(file.name) | |
texts = pypdf_loader.load_and_split() | |
texts = [text.page_content for text in texts] | |
return texts | |
def main(): | |
files = st.file_uploader("Upload PDF File", type="pdf", key="pdf_upload") | |
if not files: | |
return | |
file = files[0] | |
st.write(f"Processing `{file.name}`...") | |
texts = process_file(file) | |
# Create a metadata for each chunk | |
metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))] | |
embeddings = FastEmbedEmbeddings() | |
docsearch = Chroma.from_texts(texts, embeddings, metadatas=metadatas) | |
message_history = ChatMessageHistory() | |
memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
output_key="answer", | |
chat_memory=message_history, | |
return_messages=True, | |
) | |
chain = ConversationalRetrievalChain.from_llm( | |
ChatGroq(temperature=0.2, groq_api_key=groq_api_key, model_name='mixtral-8x7b-32768', streaming=True), | |
chain_type="stuff", | |
retriever=docsearch.as_retriever(), | |
memory=memory, | |
return_source_documents=True, | |
) | |
st.write(f"Processing `{file.name}` done. You can now ask questions!") | |
while True: | |
user_input = st.text_input("User Input") | |
if st.button("Send"): | |
res = chain.call(user_input) | |
answer = res["answer"] | |
source_documents = res["source_documents"] | |
text_elements = [] | |
if source_documents: | |
for source_idx, source_doc in enumerate(source_documents): | |
source_name = f"source_{source_idx}" | |
text_elements.append(Document(content=source_doc.page_content, name=source_name)) | |
source_names = [text_el.name for text_el in text_elements] | |
if source_names: | |
answer += f"\nSources: {', '.join(source_names)}" | |
else: | |
answer += "\nNo sources found" | |
st.write(answer) | |
for source_doc in source_documents: | |
st.write(source_doc.page_content) |