File size: 21,649 Bytes
537d6a1 10cdfa7 537d6a1 10cdfa7 537d6a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
# NonToxicGlazeAdvisor_Chat_with_Docs_Groq_Edition_1 - app.py - 02-04-2024
# STREAMLIT:
# https://www.datacamp.com/tutorial/streamlit:
#
# st.title(): This function allows you to add the title of the app.
# st.header(): This function is used to set header of a section.
# st.markdown(): This function is used to set a markdown of a section.
# st.subheader(): This function is used to set sub-header of a section.
# st.caption(): This function is used to write caption.
# st.code(): This function is used to set a code.
# st.latex(): This function is used to display mathematical expressions formatted as LaTeX.
#
# st.title ("this is the app title")
# st.header("this is the header ")
# st.markdown("this is the markdown")
# st.subheader("this is the subheader")
# st.caption("this is the caption")
# st.code("x=2021")
# st.latex(r''' a+a r^1+a r^2+a r^3 ''')
# JB:
# LangChainDeprecationWarning: Importing embeddings from langchain is deprecated.
# Importing from langchain will no longer be supported as of langchain==0.2.0.
# Please import from langchain-community instead:
# `from langchain_community.embeddings import FastEmbedEmbeddings`.
# To install langchain-community run `pip install -U langchain-community`.
from langchain_community.embeddings import FastEmbedEmbeddings
import os
import streamlit as st
from langchain_groq import ChatGroq
from langchain_community.document_loaders import WebBaseLoader
# JB:
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import OllamaEmbeddings
# JB:
from langchain_community.embeddings import FastEmbedEmbeddings
from langchain_community.document_loaders import PyPDFDirectoryLoader
# JB:
# File Directory
# This covers how to load all documents in a directory.
# Under the hood, by default this uses the UnstructuredLoader.
from langchain_community.document_loaders import DirectoryLoader
from langchain_community.document_loaders import TextLoader
import chardet
from langchain_community.vectorstores import FAISS
# from langchain.vectorstores import Chroma
# from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import create_retrieval_chain
import time
from dotenv import load_dotenv
import glob
load_dotenv() #
groq_api_key = os.environ['GROQ_API_KEY']
# groq_api_key = "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" # os.environ['GROQ_API_KEY']
# groq_api_key = "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" # JB OK 24-03-2024
# print("groq_api_key: ", groq_api_key)
# st.title("Chat with Docs - Groq Edition :) ")
# # st.title ("this is the app title")
# st.title("Non-Toxic Glaze Advisor:")
# st.subheader("A tool for getting advicgroqe on non-toxic ceramic glazes for earthenware temperature ranges.")
# st.subheader("Victor Benchuijsen : (Glaze techniques / Ceramics)")
# st.subheader("Jan Bours : Artificial Intelligence / Data Science / Natural Language Processing (ALL RIGHTS RESERVED)")
# st.write("---------------------------------")
# st.subheader("Chat with Docs - Using AI: 'mixtral-8x7b-32768' Groq Edition (Very Fast!) - VERSION 1 - March 18, 2024")
# st.write("---------------------------------")
st.title("Adviseur voor niet-giftige glazuren:")
st.subheader("Een gereedschap gebaseerd op Kunstmatige Intelligentie (AI) om advies te krijgen over niet-giftige keramische glazuren voor aardewerk temperatuur bereiken.")
st.write("---------------------------------")
st.subheader("Victor Benckhuijsen : (Glazuur technieken / Keramiek)")
st.subheader("(ALL RIGHTS RESERVED)")
st.image('Victor_Benckhuijsen_2.png', caption='Victor Benckhuijsen')
# st.subheader("---------------------------------")
# st.write("---------------------------------")
st.subheader("Jan Bours : Artificial Intelligence / Data Science / Natural Language Processing")
st.subheader("(ALL RIGHTS RESERVED)")
st.image('Jan_Bours_2.png', caption='Jan Bours')
st.write("---------------------------------")
st.subheader("Chat with Docs - Using AI: 'mixtral-8x7b-32768' Groq Edition (Very Fast!) - VERSION 2 - April 3, 2024")
st.write("---------------------------------")
# st.header("LIST OF ALL THE LOADED DOCUMENTS: ")
st.header("LIJST MET ALLE ACTUEEL GELADEN DOCUMENTEN: ")
st.write("")
pdf_files = glob.glob("*.pdf")
# word_files = glob.glob("*.docx")
for file in pdf_files:
# for file in word_files:
st.subheader(file)
st.write("---------------------------------")
start1 = time.process_time()
if "vector" not in st.session_state:
st.write("Even geduld a.u.b. ........")
# st.header("Chunking, embedding, storing in FAISS vectorstore (Can take a long time!).")
# st.subheader("Wait till this hase been done before you can enter your query! .......")
# st.session_state.embeddings = OllamaEmbeddings() # ORIGINAL
st.session_state.embeddings = FastEmbedEmbeddings() # JB
# st.session_state.loader = WebBaseLoader("https://paulgraham.com/greatwork.html") # ORIGINAL
# st.session_state.docs = st.session_state.loader.load() # ORIGINAL
# https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.pdf.PyPDFLoader.html
# https://python.langchain.com/docs/integrations/document_loaders/merge_doc
# from langchain_community.document_loaders import PyPDFLoader
# loader_pdf = PyPDFLoader("../MachineLearning-Lecture01.pdf")
#
# https://stackoverflow.com/questions/60215731/pypdf-to-read-each-pdf-in-a-folder
#
# https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.pdf.PyPDFDirectoryLoader.html
# https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf#pypdf-directory
# !!!!!
# PyPDF Directory
# Load PDFs from directory
# from langchain_community.document_loaders import PyPDFDirectoryLoader
# loader = PyPDFDirectoryLoader("example_data/")
# docs = loader.load()
#
# ZIE OOK:
# https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf#using-pypdf
# Using MathPix
# Inspired by Daniel Gross's https://gist.github.com/danielgross/3ab4104e14faccc12b49200843adab21
# from langchain_community.document_loaders import MathpixPDFLoader
# loader = MathpixPDFLoader("example_data/layout-parser-paper.pdf")
# data = loader.load()
# pdf_file_path = "*.pdf" # JB
# st.session_state.loader = PyPDFLoader(file_path=pdf_file_path).load() # JB
# st.session_state.loader = PyPDFLoader(*.pdf).load() # JB syntax error *.pdf !
# st.session_state.loader = PyPDFDirectoryLoader("*.pdf") # JB PyPDFDirectoryLoader("example_data/")
# chunks = self.text_splitter.split_documents(docs)
# chunks = filter_complex_metadata(chunks)
# JB:
# https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf#pypdf-directory
# st.session_state.docs = st.session_state.loader.load()
# loader = PyPDFDirectoryLoader(".")
# docs = loader.load()
# st.session_state.docs = docs
# https://docs.streamlit.io/library/api-reference/status/st.status
# st.status(label, *, expanded=False, state="running")
with st.status("Laden van de PDF documenten / Splitting de teksten / Genereer de Vector Store ...", expanded=True) as status:
# st.write("Searching for data...")
# time.sleep(2)
# st.write("Found URL.")
# time.sleep(1)
# st.write("Downloading data...")
# time.sleep(1)
#status.update(label="Download complete!", state="complete", expanded=False)
st.write("Laden van de PDF documenten...")
# JB:
# https://python.langchain.com/docs/modules/data_connection/document_loaders/file_directory
# text_loader_kwargs={'autodetect_encoding': True}
text_loader_kwargs={'autodetect_encoding': False}
path = '../'
# loader = DirectoryLoader(path, glob="**/*.pdf", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs)
# PyPDFDirectoryLoader (TEST):
# loader = PyPDFDirectoryLoader(path, glob="**/*.pdf", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs)
# loader = PyPDFDirectoryLoader(path, glob="**/*.pdf", loader_kwargs=text_loader_kwargs)
loader = PyPDFDirectoryLoader(path, glob="**/*.pdf")
docs = loader.load()
st.session_state.docs = docs
# JB 18-03-2024:
# https://python.langchain.com/docs/integrations/document_loaders/
# MICROSOFT WORD:
# https://python.langchain.com/docs/integrations/document_loaders/microsoft_word
# 1 - Using Docx2txt
# Load .docx using Docx2txt into a document.
# %pip install --upgrade --quiet docx2txt
# from langchain_community.document_loaders import Docx2txtLoader
# loader = Docx2txtLoader("example_data/fake.docx")
# data = loader.load()
# data
# [Document(page_content='Lorem ipsum dolor sit amet.', metadata={'source': 'example_data/fake.docx'})]
#
# 2A - Using Unstructured
# from langchain_community.document_loaders import UnstructuredWordDocumentLoader
# loader = UnstructuredWordDocumentLoader("example_data/fake.docx")
# data = loader.load()
# data
# [Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': 'fake.docx'}, lookup_index=0)]
#
# 2B - Retain Elements
# Under the hood, Unstructured creates different “elements” for different chunks of text.
# By default we combine those together, but you can easily keep that separation by specifying mode="elements".
# loader = UnstructuredWordDocumentLoader("example_data/fake.docx", mode="elements")
# data = loader.load()
# data[0]
# Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': 'fake.docx', 'filename': 'fake.docx', 'category': 'Title'}, lookup_index=0)
#
# 2A - Using Unstructured
# from langchain_community.document_loaders import UnstructuredWordDocumentLoader
# loader = UnstructuredWordDocumentLoader(path, glob="**/*.docx")
# docs = loader.load()
# st.session_state.docs = docs
st.write("Splitting / chunking de teksten...")
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
st.session_state.documents = st.session_state.text_splitter.split_documents(st.session_state.docs)
st.write("Genereer de Vector Store (kan enige minuten duren)...")
# https://python.langchain.com/docs/integrations/vectorstores/faiss
# docs_and_scores = db.similarity_search_with_score(query)
# Saving and loading
# You can also save and load a FAISS index.
# This is useful so you don’t have to recreate it everytime you use it.
# db.save_local("faiss_index")
# new_db = FAISS.load_local("faiss_index", embeddings)
# docs = new_db.similarity_search(query)
# docs[0]
# Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt'})
#
st.session_state.vector = FAISS.from_documents(st.session_state.documents, st.session_state.embeddings) # ORIGINAL
# st.session_state.vector = FAISS.from_documents(st.session_state.documents, st.session_state.embeddings) # ORIGINAL
#st.session_state.vector.save_local("faiss_index")
# The de-serialization relies loading a pickle file.
# Pickle files can be modified to deliver a malicious payload that results in execution of arbitrary code on your machine.
# You will need to set `allow_dangerous_deserialization` to `True` to enable deserialization. If you do this, make sure that you trust the source of the data.
#st.session_state.vector = FAISS.load_local("faiss_index", st.session_state.embeddings, allow_dangerous_deserialization=True)
# ZIE:
# ZIE VOOR EEN APP MET CHROMADB:
# https://github.com/vndee/local-rag-example/blob/main/rag.py
# https://raw.githubusercontent.com/vndee/local-rag-example/main/rag.py
# Chroma.from_documents(documents=chunks, embedding=FastEmbedEmbeddings())
# st.session_state.vector = Chroma.from_documents(st.session_state.documents, st.session_state.embeddings) # JB
# st.write(f"Response time van de LLM: {elapsed_time:.1f} seconds")
# print(f"Response time: {time.process_time() - start}")
elapsed_time = time.process_time() - start1
st.write(f"Response time voor: Laden van de PDF documenten / Splitting de teksten / Genereer de Vector Store: {elapsed_time:.1f} seconds")
st.write("---------------------------------")
# st.title("Chat with Docs - Groq Edition :) ")
# st.title("Literature Based Research (LBR) - A. Unzicker and J. Bours - Chat with Docs - Groq Edition (Very Fast!) - VERSION 3 - March 8 2024")
llm = ChatGroq(
temperature=0.2,
groq_api_key=groq_api_key,
model_name='mixtral-8x7b-32768'
)
prompt = ChatPromptTemplate.from_template("""
Answer the following question based only on the provided context.
Think step by step before providing a detailed answer.
I will tip you $200 if the user finds the answer helpful.
<context>
{context}
</context>
Question: {input}""")
document_chain = create_stuff_documents_chain(llm, prompt)
retriever = st.session_state.vector.as_retriever()
retrieval_chain = create_retrieval_chain(retriever, document_chain)
## prompt = st.text_input("Input your prompt here") #, key=key)
#prompt = st.text_input("Stel hieronder Uw vraag:") #, key=key)
#
## If the user hits enter
#if prompt:
# # Then pass the prompt to the LLM
# start = time.process_time()
# response = retrieval_chain.invoke({"input": prompt})
# # print(f"Response time: {time.process_time() - start}")
# st.write(f"Response time: {time.process_time() - start} seconds")
#
# st.write(response["answer"])
#
# # With a streamlit expander
# with st.expander("Document Similarity Search"):
# # Find the relevant chunks
# for i, doc in enumerate(response["context"]):
# # print(doc)
# # st.write(f"Source Document # {i+1} : {doc.metadata['source'].split('/')[-1]}")
# st.write(doc)
# st.write(f"Source Document # {i+1} : {doc.metadata['source'].split('/')[-1]}")
#
#
# st.write(doc.page_content)
# st.write("--------------------------------")
#
#st.write("---------------------------------")
# ZIE:
# https://raw.githubusercontent.com/streamlit/llm-examples/main/Chatbot.py
# from openai import OpenAI
# import streamlit as st
with st.sidebar:
# openai_api_key = st.text_input("OpenAI API Key", key="chatbot_api_key", type="password")
UserEmailAdress = st.text_input("Vul Uw email adres hier in: ", key="UserEmailAdress", type="password")
# "[Zelf keramische glazuren NON TOXIC samenstellen vanuit 1 basisglazuur](http://www.ceramicconcepts.nl/)"
"[Keramische ateliers Victor Benckhuijsen](https://victorglazuren.nl/)"
"[Keramiek Victor Glazuren Victor Benckhuijsen - Instagram](https://www.instagram.com/benckhuijsenvictor/?hl=am-et)"
"[Keramiek Victor Glazuren Victor Benckhuijsen - Facebook](https://www.facebook.com/harryjamaar)"
"[Keramiek Victor Glazuren Victor Benckhuijsen - YouTube](https://www.youtube.com/@kleienhoop/videos)"
st.title("💬 Chatbot")
st.caption("🚀 A streamlit chatbot powered by mixtral-8x7b-32768 Groq LLM (VERY FAST !). temperature=0.2")
if "messages" not in st.session_state:
st.session_state["messages"] = [{"role": "assistant", "content": "Hoe kan ik U helpen?"}]
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
# TAAL KIEZER
option = st.selectbox(
'In welke taal wilt U Uw vragen stellen en de AI laten antwoorden? Keuzemogelijkheden zijn : Nederlands, Engels, Duits, Frans, Spaans.',
('Nederlands', 'Engels', 'Duits', 'Frans', 'Spaans'))
st.write('You selected:', option)
language_prompt = " Antwoordt uitsluitend en alleen in de taal: " + option + " en beslist niet in een andere taal!"
st.write('language_prompt:', language_prompt)
if prompt := st.chat_input():
#if not openai_api_key:
# st.info("Please add your OpenAI API key to continue.")
# st.stop()
original_prompt = prompt
prompt = prompt + language_prompt
st.write('prompt + language_prompt:', prompt)
# Then pass the prompt to the LLM
start = time.process_time()
response = retrieval_chain.invoke({"input": prompt})
# print(f"Response time: {time.process_time() - start}")
elapsed_time = time.process_time() - start
st.write(f"Response time van de LLM: {elapsed_time:.1f} seconds")
# st.write(response["answer"])
# https://docs.streamlit.io/library/api-reference/chat/st.chat_message
# st.chat_message(name, *, avatar=None)
# The avatar shown next to the message. Can be one of:
# - A single emoji, e.g. "🧑💻", "🤖", "🦖". Shortcodes are not supported.
# - An image using one of the formats allowed for st.image: path of a local image file;
# URL to fetch the image from; an SVG image; array of shape (w,h) or (w,h,1) for a monochrome image,
# (w,h,3) for a color image, or (w,h,4) for an RGBA image.
# If None (default), uses default icons if name is "user", "assistant", "ai", "human" or the first letter of the name value.
#client = OpenAI(api_key=openai_api_key)
st.session_state.messages.append({"role": "user", "content": prompt})
# st.chat_message("user").write(prompt)
# original_prompt
st.chat_message("user").write(original_prompt)
# response = client.chat.completions.create(model="gpt-3.5-turbo", messages=st.session_state.messages)
# msg = response.choices[0].message.content
msg = response["answer"]
st.session_state.messages.append({"role": "assistant", "content": msg})
# st.chat_message("assistant").write(msg)
# MET ALS AVATAR EEN IMAGE VAN VICTOR:
st.chat_message("assistant", avatar="Victor_Benckhuisen_20_percent.jpg").write(msg)
# With a streamlit expander
with st.expander("Document Similarity Search"):
# Find the relevant chunks
for i, doc in enumerate(response["context"]):
# print(doc)
# st.write(f"Source Document # {i+1} : {doc.metadata['source'].split('/')[-1]}")
st.write(doc)
st.write(f"Source Document # {i+1} : {doc.metadata['source'].split('/')[-1]}")
st.write(doc.page_content)
st.write("--------------------------------")
# Show total messages history of user + AI in this session up till this point
with st.expander("Show total messages history of user + AI in this session up till this point"):
# st.session_state.messages
st.write(st.session_state.messages)
st.write("--------------------------------")
st.write("---------------------------------")
#i=0
#while True:
#
# # data = ["input1", "input2", "input3"]
#
# #for i, item in enumerate(data):
# key = f"input_{i}"
# # text_input = st.text_input(f"Enter value for {item}", key=key)
# # Access the value directly
# print(f"Value for key: {key}")
#
# i=i+1
#
# prompt = st.text_input("Input your prompt here", key=key)
#
#
# # If the user hits enter
# if prompt:
# # Then pass the prompt to the LLM
# start = time.process_time()
# response = retrieval_chain.invoke({"input": prompt})
# # print(f"Response time: {time.process_time() - start}")
# st.write(f"Response time: {time.process_time() - start} seconds")
#
# st.write(response["answer"])
#
# # With a streamlit expander
# with st.expander("Document Similarity Search"):
# # Find the relevant chunks
# for i, doc in enumerate(response["context"]):
# # print(doc)
# # st.write(f"Source Document # {i+1} : {doc.metadata['source'].split('/')[-1]}")
# st.write(doc)
# st.write(f"Source Document # {i+1} : {doc.metadata['source'].split('/')[-1]}")
#
#
# st.write(doc.page_content)
# st.write("--------------------------------")
#
# st.write("---------------------------------") |