Update app_BACKUP_08032024
Browse files- app_BACKUP_08032024 +100 -0
app_BACKUP_08032024
CHANGED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app_BACKUP_08032024
|
2 |
+
|
3 |
+
# JB:
|
4 |
+
# LangChainDeprecationWarning: Importing embeddings from langchain is deprecated.
|
5 |
+
# Importing from langchain will no longer be supported as of langchain==0.2.0.
|
6 |
+
# Please import from langchain-community instead:
|
7 |
+
# `from langchain_community.embeddings import FastEmbedEmbeddings`.
|
8 |
+
# To install langchain-community run `pip install -U langchain-community`.
|
9 |
+
from langchain_community.embeddings import FastEmbedEmbeddings
|
10 |
+
|
11 |
+
import os
|
12 |
+
import streamlit as st
|
13 |
+
from langchain_groq import ChatGroq
|
14 |
+
from langchain_community.document_loaders import WebBaseLoader
|
15 |
+
from langchain_community.embeddings import OllamaEmbeddings
|
16 |
+
|
17 |
+
# JB:
|
18 |
+
from langchain.embeddings import FastEmbedEmbeddings
|
19 |
+
|
20 |
+
from langchain_community.vectorstores import FAISS
|
21 |
+
# from langchain.vectorstores import Chroma
|
22 |
+
# from langchain_community.vectorstores import Chroma
|
23 |
+
|
24 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
25 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
26 |
+
from langchain_core.prompts import ChatPromptTemplate
|
27 |
+
from langchain.chains import create_retrieval_chain
|
28 |
+
import time
|
29 |
+
from dotenv import load_dotenv
|
30 |
+
|
31 |
+
load_dotenv() #
|
32 |
+
|
33 |
+
# groq_api_key = os.environ['GROQ_API_KEY']
|
34 |
+
groq_api_key = "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" # os.environ['GROQ_API_KEY']
|
35 |
+
print("groq_api_key: ", groq_api_key)
|
36 |
+
|
37 |
+
|
38 |
+
if "vector" not in st.session_state:
|
39 |
+
|
40 |
+
# st.session_state.embeddings = OllamaEmbeddings() # ORIGINAL
|
41 |
+
st.session_state.embeddings = FastEmbedEmbeddings() # JB
|
42 |
+
|
43 |
+
|
44 |
+
st.session_state.loader = WebBaseLoader("https://paulgraham.com/greatwork.html")
|
45 |
+
st.session_state.docs = st.session_state.loader.load()
|
46 |
+
|
47 |
+
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
48 |
+
st.session_state.documents = st.session_state.text_splitter.split_documents( st.session_state.docs)
|
49 |
+
# st.session_state.vector = FAISS.from_documents(st.session_state.documents, st.session_state.embeddings) # ORIGINAL
|
50 |
+
st.session_state.vector = FAISS.from_documents(st.session_state.documents, st.session_state.embeddings) # ORIGINAL
|
51 |
+
# ZIE:
|
52 |
+
# ZIE VOOR EEN APP MET CHROMADB:
|
53 |
+
# https://github.com/vndee/local-rag-example/blob/main/rag.py
|
54 |
+
# https://raw.githubusercontent.com/vndee/local-rag-example/main/rag.py
|
55 |
+
# Chroma.from_documents(documents=chunks, embedding=FastEmbedEmbeddings())
|
56 |
+
# st.session_state.vector = Chroma.from_documents(st.session_state.documents, st.session_state.embeddings) # JB
|
57 |
+
|
58 |
+
|
59 |
+
# st.title("Chat with Docs - Groq Edition :) ")
|
60 |
+
st.title("Literature Based Research (LBR) - A. Unzicker and J. Bours - Chat with Docs - Groq Edition (Very Fast!) - VERSION 3 - March 8 2024")
|
61 |
+
|
62 |
+
llm = ChatGroq(
|
63 |
+
groq_api_key=groq_api_key,
|
64 |
+
model_name='mixtral-8x7b-32768'
|
65 |
+
)
|
66 |
+
|
67 |
+
prompt = ChatPromptTemplate.from_template("""
|
68 |
+
Answer the following question based only on the provided context.
|
69 |
+
Think step by step before providing a detailed answer.
|
70 |
+
I will tip you $200 if the user finds the answer helpful.
|
71 |
+
<context>
|
72 |
+
{context}
|
73 |
+
</context>
|
74 |
+
Question: {input}""")
|
75 |
+
|
76 |
+
document_chain = create_stuff_documents_chain(llm, prompt)
|
77 |
+
|
78 |
+
retriever = st.session_state.vector.as_retriever()
|
79 |
+
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
80 |
+
|
81 |
+
prompt = st.text_input("Input your prompt here")
|
82 |
+
|
83 |
+
|
84 |
+
# If the user hits enter
|
85 |
+
if prompt:
|
86 |
+
# Then pass the prompt to the LLM
|
87 |
+
start = time.process_time()
|
88 |
+
response = retrieval_chain.invoke({"input": prompt})
|
89 |
+
print(f"Response time: {time.process_time() - start}")
|
90 |
+
|
91 |
+
st.write(response["answer"])
|
92 |
+
|
93 |
+
# With a streamlit expander
|
94 |
+
with st.expander("Document Similarity Search"):
|
95 |
+
# Find the relevant chunks
|
96 |
+
for i, doc in enumerate(response["context"]):
|
97 |
+
# print(doc)
|
98 |
+
# st.write(f"Source Document # {i+1} : {doc.metadata['source'].split('/')[-1]}")
|
99 |
+
st.write(doc.page_content)
|
100 |
+
st.write("--------------------------------")
|