Spaces:
Runtime error
Runtime error
File size: 3,151 Bytes
258d8c9 c74095e 975dc6e c74095e 258d8c9 880828c c74095e 3eed896 258d8c9 c74095e 258d8c9 090c9fa c74095e 090c9fa c74095e febb26d 090c9fa 8118b09 c74095e febb26d 090c9fa 8118b09 c74095e 090c9fa c74095e 258d8c9 c131c56 125cff5 f9183eb c131c56 880828c 806402e 880828c ffe36d8 806402e ffe36d8 880828c ffe36d8 880828c 125cff5 5ad5f5e 125cff5 880828c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import gradio as gr
import jax
import jax.numpy as jnp
import numpy as np
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from PIL import Image
from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel
import cv2
with open("test.html") as f:
lines = f.readlines()
def create_key(seed=0):
return jax.random.PRNGKey(seed)
def wandb_report(url):
iframe = f'<iframe src ={url} style="border:none;height:1024px;width:100%"/frame>'
return gr.HTML(iframe)
report_url = 'https://wandb.ai/john-fozard/dog-cat-pose/runs/kmwcvae5'
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
"JFoz/dog-cat-pose", dtype=jnp.bfloat16
)
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.bfloat16
)
def infer(prompts, negative_prompts, image):
params["controlnet"] = controlnet_params
num_samples = 1 #jax.device_count()
rng = create_key(0)
rng = jax.random.split(rng, jax.device_count())
image = Image.fromarray(image)
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples)
processed_image = pipe.prepare_image_inputs([image] * num_samples)
p_params = replicate(params)
prompt_ids = shard(prompt_ids)
negative_prompt_ids = shard(negative_prompt_ids)
processed_image = shard(processed_image)
output = pipe(
prompt_ids=prompt_ids,
image=processed_image,
params=p_params,
prng_seed=rng,
num_inference_steps=50,
neg_prompt_ids=negative_prompt_ids,
jit=True,
).images
output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))
return output_images
#control_image = "https://huggingface.co/spaces/kfahn/Animal_Pose_Control_Net/blob/main/image_control.png"
with gr.Blocks(theme='kfahn/AnimalPose') as demo:
gr.Markdown(
"""
# Animal Pose Control Net
## This is a demo of Animal Pose ControlNet, which is a model trained on runwayml/stable-diffusion-v1-5 with new type of conditioning.
[Dataset](https://huggingface.co/datasets/JFoz/dog-poses-controlnet-dataset)
[Diffusers model](https://huggingface.co/JFoz/dog-pose)
[Github](https://github.com/fi4cr/animalpose)
[Training Report](https://wandb.ai/john-fozard/dog-cat-pose/runs/kmwcvae5)
""")
with gr.Column():
with gr.Row():
keypoint_tool = gr.HTML(lines)
with gr.Row():
pos_prompts = gr.Textbox(label="Prompt")
with gr.Row():
neg_prompts = gr.Textbox(label="Negative Prompt")
with gr.Row():
image = gr.Image()
with gr.Row():
report = wandb_report(report_url)
#gr.Interface(fn=infer, inputs = ["text", "text", "image"], outputs = "gallery",
# examples=[["a Labrador crossing the road", "low quality", control_image]])
gr.Interface(fn=infer, inputs = ["text", "text", "image"], outputs = "gallery")
demo.launch()
|