File size: 3,507 Bytes
258d8c9
c74095e
975dc6e
c74095e
 
 
 
 
 
258d8c9
e8b12f5
 
880828c
c74095e
 
c4964ee
a15e3f7
 
 
c4964ee
3eed896
 
 
 
 
48c7266
258d8c9
c74095e
 
 
 
 
258d8c9
 
090c9fa
 
c74095e
 
 
 
 
090c9fa
c74095e
febb26d
090c9fa
8118b09
c74095e
 
febb26d
090c9fa
8118b09
c74095e
 
 
 
 
 
 
090c9fa
c74095e
 
 
 
 
258d8c9
c131c56
880828c
 
 
 
806402e
 
 
 
880828c
466cd5e
 
b6e7466
bf379ef
 
466cd5e
 
493299e
 
b3b77e5
 
880828c
eec41f6
3ea175e
5ad5f5e
466cd5e
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import gradio as gr
import jax
import jax.numpy as jnp
import numpy as np
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from PIL import Image
from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel
import cv2

with open("test.html") as f:
    lines = f.readlines()

def create_key(seed=0):
    return jax.random.PRNGKey(seed)

def addp5sketch(url):
    iframe = f'<iframe src ={url} style="border:none;height:525px;width:100%"/frame>'
    return gr.HTML(iframe)

def wandb_report(url):
    iframe = f'<iframe src ={url} style="border:none;height:1024px;width:100%"/frame>'
    return gr.HTML(iframe)

report_url = 'https://wandb.ai/john-fozard/dog-cat-pose/runs/kmwcvae5'
control_img = 'myimage.jpg'

controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
    "JFoz/dog-cat-pose", dtype=jnp.bfloat16
)
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.bfloat16
)

def infer(prompts, negative_prompts, image):

    params["controlnet"] = controlnet_params
    
    num_samples = 1 #jax.device_count()
    rng = create_key(0)
    rng = jax.random.split(rng, jax.device_count())
    image = Image.fromarray(image)
    
    prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
    negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples)
    processed_image = pipe.prepare_image_inputs([image] * num_samples)
    
    p_params = replicate(params)
    prompt_ids = shard(prompt_ids)
    negative_prompt_ids = shard(negative_prompt_ids)
    processed_image = shard(processed_image)
    
    output = pipe(
        prompt_ids=prompt_ids,
        image=processed_image,
        params=p_params,
        prng_seed=rng,
        num_inference_steps=50,
        neg_prompt_ids=negative_prompt_ids,
        jit=True,
    ).images
    
    output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))
    return output_images

with gr.Blocks(theme='kfahn/AnimalPose') as demo:  
  gr.Markdown(
      """
      # Animal Pose Control Net
      ## This is a demo of Animal Pose ControlNet, which is a model trained on runwayml/stable-diffusion-v1-5 with new type of conditioning.
      [Dataset](https://huggingface.co/datasets/JFoz/dog-poses-controlnet-dataset)  
      [Diffusers model](https://huggingface.co/JFoz/dog-pose)  
      [Github](https://github.com/fi4cr/animalpose)   
      [Training Report](https://wandb.ai/john-fozard/dog-cat-pose/runs/kmwcvae5)
      """)
  with gr.Row():
    with gr.Column():
      prompts  = gr.Textbox(label="Prompt")
      negative_prompts  = gr.Textbox(label="Negative Prompt")
      conditioning_image = gr.Image(label="Conditioning Image")
      submit_btn = gr.Button(value="Submit")
    with gr.Column():
      #keypoint_tool = addp5sketch(sketch_url)
      keypoint_tool = gr.HTML(lines)
  #submit_btn.click(fn=infer, inputs = ["text", "text", "image"], outputs = "gallery",
                 # examples=[["a Labrador crossing the road", "low quality", "myimage.jpg"]])

gr.Interface(fn=infer, inputs = [prompts, negative_prompts, conditioning_image], outputs = "gallery",
            examples=[["a Labrador crossing the road", "low quality", "myimage.jpg"]])   

#gr.Interface(fn=infer, inputs = ["text", "text", "image"], outputs = "gallery")  
    
with gr.Row():
    report = wandb_report(report_url)
    
demo.launch()