Spaces:
Runtime error
Runtime error
import gradio as gr | |
import jax | |
import jax.numpy as jnp | |
import numpy as np | |
from flax.jax_utils import replicate | |
from flax.training.common_utils import shard | |
from PIL import Image | |
from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel | |
import cv2 | |
def create_key(seed=0): | |
return jax.random.PRNGKey(seed) | |
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( | |
"JFoz/dog-cat-pose", dtype=jnp.bfloat16 | |
) | |
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.bfloat16 | |
) | |
def infer(prompt, image): | |
params["controlnet"] = controlnet_params | |
num_samples = 1 #jax.device_count() | |
rng = create_key(0) | |
rng = jax.random.split(rng, jax.device_count()) | |
im = image | |
image = Image.fromarray(im) | |
#prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) | |
#negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples) | |
processed_image = pipe.prepare_image_inputs([image] * num_samples) | |
p_params = replicate(params) | |
#prompt_ids = shard(prompt_ids) | |
#negative_prompt_ids = shard(negative_prompt_ids) | |
processed_image = shard(processed_image) | |
output = pipe( | |
prompt_ids=prompt_ids, | |
image=processed_image, | |
params=p_params, | |
prng_seed=rng, | |
num_inference_steps=50, | |
#neg_prompt_ids=negative_prompt_ids, | |
jit=True, | |
).images | |
output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:]))) | |
return output_images | |
#gr.Interface(infer, inputs=["text", "text", "image"], outputs="gallery").launch() | |
title = "Animal Pose Control Net" | |
description = "This is a demo of Animal Pose ControlNet, which is a model trained on runwayml/stable-diffusion-v1-5 with new type of conditioning." | |
with gr.Blocks(theme=gr.themes.Default(font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"])) as demo: | |
gr.Markdown( | |
""" | |
# Animal Pose Control Net | |
# This is a demo of Animal Pose Control Net, which is a model trained on runwayml/stable-diffusion-v1-5 with new type of conditioning. | |
""") | |
gr.Examples( | |
examples=[ | |
#["a tortoiseshell cat is sitting on a cushion"], | |
#["a yellow dog standing on a lawn"], | |
["a tortoiseshell cat is sitting on a cushion", "https://huggingface.co/JFoz/dog-cat-pose/blob/main/images_0.png"], | |
["a yellow dog standing on a lawn", "https://huggingface.co/JFoz/dog-cat-pose/blob/main/images_1.png"], | |
] | |
) | |
gr.Interface(fn = infer, inputs = ["text", "text", "image"], outputs = "image", | |
title = title, description = description, examples = gr.examples, theme='gradio/soft').launch() | |
gr.Markdown( | |
""" | |
* [Dataset](https://huggingface.co/datasets/JFoz/dog-poses-controlnet-dataset) | |
* [Diffusers model](), [Web UI model](https://huggingface.co/JFoz/dog-pose) | |
* [Training Report](https://wandb.ai/john-fozard/dog-cat-pose/runs/kmwcvae5)) | |
""") | |