import gradio as gr import jax import jax.numpy as jnp import numpy as np from flax.jax_utils import replicate from flax.training.common_utils import shard from PIL import Image from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel import cv2 def create_key(seed=0): return jax.random.PRNGKey(seed) controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( "JFoz/dog-cat-pose", dtype=jnp.bfloat16 ) pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.bfloat16 ) def infer(prompts, negative_prompts, image): params["controlnet"] = controlnet_params num_samples = 1 #jax.device_count() rng = create_key(0) rng = jax.random.split(rng, jax.device_count()) image = Image.fromarray(image) prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples) processed_image = pipe.prepare_image_inputs([image] * num_samples) p_params = replicate(params) prompt_ids = shard(prompt_ids) negative_prompt_ids = shard(negative_prompt_ids) processed_image = shard(processed_image) output = pipe( prompt_ids=prompt_ids, image=processed_image, params=p_params, prng_seed=rng, num_inference_steps=50, neg_prompt_ids=negative_prompt_ids, jit=True, ).images output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:]))) return output_images #gr.Interface(infer, inputs=["text", "text", "image"], outputs="gallery").launch() title = "Animal Pose Control Net" description = "This is a demo of Animal Pose ControlNet, which is a model trained on runwayml/stable-diffusion-v1-5 with new type of conditioning." #with gr.Blocks(theme=gr.themes.Default(font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"])) as demo: #gr.Markdown( # """ # Animal Pose Control Net # This is a demo of Animal Pose Control Net, which is a model trained on runwayml/stable-diffusion-v1-5 with new type of conditioning. #""") #theme = gr.themes.Default(primary_hue="green").set( # button_primary_background_fill="*primary_200", # button_primary_background_fill_hover="*primary_300", #) #gr.Interface(fn = infer, inputs = ["text"], outputs = "image", # title = title, description = description, theme='gradio/soft').launch() control_image = "https://huggingface.co/spaces/kfahn/Animal_Pose_Control_Net/blob/main/image_control.png" gr.Interface(fn = infer, inputs = ["text", "text", "image"], outputs = "gallery", title = title, description = description, theme='gradio/soft', #examples=[["a Labrador crossing the road", "low quality", control_image]] ).launch() gr.Markdown( """ * [Dataset](https://huggingface.co/datasets/JFoz/dog-poses-controlnet-dataset) * [Diffusers model](), [Web UI model](https://huggingface.co/JFoz/dog-pose) * [Training Report](https://wandb.ai/john-fozard/dog-cat-pose/runs/kmwcvae5)) """)