File size: 8,210 Bytes
c206587
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fba9b41
c206587
49a734a
c206587
 
 
 
 
 
 
 
 
 
 
 
 
 
49a734a
c206587
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49a734a
c206587
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49a734a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import pandas as pd
import numpy as np
from torch.utils.data import Dataset
import torch
from transformers import AutoTokenizer
import pytorch_lightning as pl
from torch.utils.data import DataLoader
from transformers import AutoModel, AdamW, get_cosine_schedule_with_warmup
import torch.nn as nn
import math
from torchmetrics.functional.classification import auroc
import torch.nn.functional as F
import streamlit as st
from transformers import pipeline



class toxicity_dataset(Dataset):
    def __init__(self,data_path,tokenizer,attributes,max_token_len= 128,sample = 1000):
        self.data_path=data_path
        self.tokenizer=tokenizer
        self.attributes=attributes
        self.max_token_len=max_token_len
        self.sample=sample
        self._prepare_data()
    def _prepare_data(self):
        data=pd.read_csv(self.data_path)
        if self.sample is not None:
            self.data=data.sample(self.sample,random_state=7)
        else:
            self.data=data
    def __len__(self):
        return(len(self.data))
    def __getitem__(self,index):
        item = self.data.iloc[index]
        comment = str(item.comment_text)
        attributes = torch.FloatTensor(item[self.attributes])
        tokens = self.tokenizer.encode_plus(comment,add_special_tokens=True,return_tensors="pt",truncation=True,max_length=self.max_token_len,padding="max_length",return_attention_mask=True)
        return{'input_ids':tokens.input_ids.flatten(),"attention_mask":tokens.attention_mask.flatten(),"labels":attributes}

class Toxcity_Data_Module(pl.LightningDataModule):
    def __init__(self,train_path,test_path,attributes,batch_size = 16, max_token_len = 128, model_name="roberta-base"):
        super().__init__()
        self.train_path=train_path
        self.test_path=test_path
        self.attributes=attributes
        self.batch_size=batch_size
        self.max_token_len=max_token_len
        self.model_name=model_name
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
    def setup(self, stage = None):
        if stage in (None, "fit"):
            self.train_dataset=toxicity_dataset(self.train_path,self.tokenizer,self.attributes)
            self.test_dataset=toxicity_dataset(self.test_path,self.tokenizer,self.attributes, sample=None)
        if stage == "predict":
            self.val_dataset=toxicity_dataset(self.test_path,self.tokenizer,self.attributes)
    def train_dataloader(self):
        return DataLoader(self.train_dataset,batch_size=self.batch_size,shuffle=True)
    def val_dataloader(self):
        return DataLoader(self.train_dataset,batch_size=self.batch_size,shuffle=False)
    def predict_dataloader(self):
        return DataLoader(self.test_dataset,batch_size=self.batch_size,shuffle=False)
    
class Toxic_Comment_Classifier(pl.LightningModule):
  def __init__(self, config: dict):
    super().__init__()
    self.config = config
    self.pretrained_model = AutoModel.from_pretrained(config['model_name'], return_dict = True)
    self.hidden = torch.nn.Linear(self.pretrained_model.config.hidden_size, self.pretrained_model.config.hidden_size)
    self.classifier = torch.nn.Linear(self.pretrained_model.config.hidden_size, self.config['n_labels'])
    torch.nn.init.xavier_uniform_(self.classifier.weight)
    self.loss_func = nn.BCEWithLogitsLoss(reduction='mean')
    self.dropout = nn.Dropout()
    
  def forward(self, input_ids, attention_mask=None, labels=None):
    # roberta layer
    output = self.pretrained_model(input_ids=input_ids, attention_mask=attention_mask)
    pooled_output = torch.mean(output.last_hidden_state, 1)
    # final logits
    pooled_output = self.dropout(pooled_output)
    pooled_output = self.hidden(pooled_output)
    pooled_output = F.relu(pooled_output)
    pooled_output = self.dropout(pooled_output)
    logits = self.classifier(pooled_output)
    # calculate loss
    loss = 0
    if labels is not None:
      loss = self.loss_func(logits.view(-1, self.config['n_labels']), labels.view(-1, self.config['n_labels']))
    return loss, logits

  def training_step(self, batch, batch_index):
    loss, outputs = self(**batch)
    self.log("train loss ", loss, prog_bar = True, logger=True)
    return {"loss":loss, "predictions":outputs, "labels": batch["labels"]}

  def validation_step(self, batch, batch_index):
    loss, outputs = self(**batch)
    self.log("validation loss ", loss, prog_bar = True, logger=True)
    return {"val_loss": loss, "predictions":outputs, "labels": batch["labels"]}

  def predict_step(self, batch, batch_index):
    loss, outputs = self(**batch)
    return outputs

  def configure_optimizers(self):
    optimizer = AdamW(self.parameters(), lr=self.config['lr'], weight_decay=self.config['w_decay'])
    total_steps = self.config['train_size']/self.config['bs']
    warmup_steps = math.floor(total_steps * self.config['warmup'])
    warmup_steps = math.floor(total_steps * self.config['warmup'])
    scheduler = get_cosine_schedule_with_warmup(optimizer, warmup_steps, total_steps)
    return [optimizer],[scheduler]



def predict_raw_comments(model, dm, trainer):
  #print("debug1")
  predictions = trainer.predict(model,dm)
  #print("debug2")
  flattened_predictions = np.stack([torch.sigmoid(torch.Tensor(p)) for batch in predictions for p in batch])
  #print("debug3")
  return flattened_predictions



def main():
    # -- Creates Variables for Use of Model -- 
    attributes=["toxic","severe_toxic","obscene","threat","insult","identity_hate"]
    tokenizer=AutoTokenizer.from_pretrained("roberta-base")
    toxic_comments_dataset=toxicity_dataset("AppDirectory/data/train.csv",tokenizer,attributes)

    toxicity_data_module=Toxcity_Data_Module("AppDirectory/data/train.csv","AppDirectory/data/test.csv",attributes)
    toxicity_data_module.setup()
    dataloader=toxicity_data_module.train_dataloader()

    config = {
        'model_name':"distilroberta-base",
        'n_labels':len(attributes),
        'bs':128,
        'lr':1.5e-6,
        'warmup':0.2,
        "train_size":len(toxicity_data_module.train_dataloader()),
        'w_decay':0.001,
        'n_epochs':1
    }

    toxicity_data_module=Toxcity_Data_Module("AppDirectory/data/train.csv","AppDirectory/data/reduced_test.csv",attributes,batch_size=config['bs'])
    toxicity_data_module.setup()

    
    trainer = pl.Trainer(max_epochs=config['n_epochs'],num_sanity_val_steps=50)

    ## -- Creates Streamlit App --
    st.title("Tweet Toxicity Classifier ")
    st.header("Fine tuned model from roberta-base using PyTorch")
    st.header("Jozef Janosko - CS 482, Milestone 3")

    model_name = st.selectbox("Select Model...", ["Toxicity Classification Model"])

    if st.button("Click to Load Data"):
        if model_name=="Toxicity Classification Model":
            model = torch.load("ToxicityClassificationModel.pt")
            with st.spinner('Analyzing Text...'):
                logits = predict_raw_comments(model,toxicity_data_module,trainer=trainer)
            torch_logits = torch.from_numpy(logits)
            probabilities = F.softmax(torch_logits, dim = -1).numpy()
            inputs=pd.read_csv("AppDirectory/data/reduced_test.csv")
            data=[]
            #print(inputs["comment_text"][0]," ",probabilities)
            for i in range(len(probabilities)):
                max_prob = 0
                max_cat = 6
                
                prob=0
                for j in range(6):
                    prob=probabilities[i][j]
                    if(prob >= max_prob): 
                        max_prob = prob 
                        max_cat = j
                #print(inputs["comment_text"][i]," ",attributes[max_cat]," ",max_prob," ",probabilities[i])
                data.append([inputs["comment_text"][i][0:16]+"...",attributes[max_cat],max_prob])
            results_df=pd.DataFrame(data,columns=["Comment Text","Most Likely Classification","Classification Probability"])
            st.table(data=results_df)

    
    

if __name__ == '__main__' :
    main()