JP-SystemsX commited on
Commit
220984d
·
1 Parent(s): fd58845

Minor tweaks

Browse files
Files changed (3) hide show
  1. README.md +2 -2
  2. app.py +1 -1
  3. nDCG.py +2 -2
README.md CHANGED
@@ -1,8 +1,8 @@
1
  ---
2
  title: nDCG
3
  emoji: 👁
4
- colorFrom: yellow
5
- colorTo: red
6
  sdk: gradio
7
  sdk_version: 3.9.1
8
  app_file: app.py
 
1
  ---
2
  title: nDCG
3
  emoji: 👁
4
+ colorFrom: red
5
+ colorTo: blue
6
  sdk: gradio
7
  sdk_version: 3.9.1
8
  app_file: app.py
app.py CHANGED
@@ -9,7 +9,7 @@ from evaluate.utils.logging import get_logger
9
  logger = get_logger(__name__)
10
  REGEX_YAML_BLOCK = re.compile(r"---[\n\r]+([\S\s]*?)[\n\r]+---[\n\r]")
11
 
12
- module = evaluate.load("nDCG.py")
13
 
14
  def launch_gradio_widget(metric):
15
  """Launches `metric` widget with Gradio."""
 
9
  logger = get_logger(__name__)
10
  REGEX_YAML_BLOCK = re.compile(r"---[\n\r]+([\S\s]*?)[\n\r]+---[\n\r]")
11
 
12
+ module = evaluate.load("JP-SystemsX/nDCG")
13
 
14
  def launch_gradio_widget(metric):
15
  """Launches `metric` widget with Gradio."""
nDCG.py CHANGED
@@ -66,13 +66,13 @@ Examples:
66
  >>> print(results)
67
  {'nDCG@3': 0.4123818817534531}
68
  Example 3-There is only one relevant label, but there is a tie and the model can't decide which one is the one.
69
- >>> accuracy_metric = evaluate.load("accuracy")
70
  >>> results = nDCG_metric.compute(references=[[1, 0, 0, 0, 0]], predictions=[[1, 1, 0, 0, 0]], k=1)
71
  >>> print(results)
72
  {'nDCG@1': 0.5}
73
  >>> #That is it calculates both and returns the average of both
74
  Example 4-The Same as 3, except ignore_ties is set to True.
75
- >>> accuracy_metric = evaluate.load("accuracy")
76
  >>> results = nDCG_metric.compute(references=[[1, 0, 0, 0, 0]], predictions=[[1, 1, 0, 0, 0]], k=1, ignore_ties=True)
77
  >>> print(results)
78
  {'nDCG@1': 0.0}
 
66
  >>> print(results)
67
  {'nDCG@3': 0.4123818817534531}
68
  Example 3-There is only one relevant label, but there is a tie and the model can't decide which one is the one.
69
+ >>> nDCG_metric = evaluate.load("JP-SystemsX/nDCG")
70
  >>> results = nDCG_metric.compute(references=[[1, 0, 0, 0, 0]], predictions=[[1, 1, 0, 0, 0]], k=1)
71
  >>> print(results)
72
  {'nDCG@1': 0.5}
73
  >>> #That is it calculates both and returns the average of both
74
  Example 4-The Same as 3, except ignore_ties is set to True.
75
+ >>> nDCG_metric = evaluate.load("JP-SystemsX/nDCG")
76
  >>> results = nDCG_metric.compute(references=[[1, 0, 0, 0, 0]], predictions=[[1, 1, 0, 0, 0]], k=1, ignore_ties=True)
77
  >>> print(results)
78
  {'nDCG@1': 0.0}