JP-SystemsX commited on
Commit
a5e27b5
·
1 Parent(s): 318c91b

Fixed some typos

Browse files
Files changed (1) hide show
  1. nDCG.py +4 -4
nDCG.py CHANGED
@@ -13,7 +13,7 @@ score (Ideal DCG, obtained for a perfect ranking) to obtain a score between
13
  This ranking metric returns a high value if true labels are ranked high by
14
  ``predictions``.
15
 
16
- If a value for k is given to the metric it will only consider the k highest
17
  scores in the ranking
18
 
19
  References
@@ -41,12 +41,12 @@ Args:
41
 
42
  predictions ('list' of 'float'): Either predicted relevance, probability estimates or confidence values
43
 
44
- k (int): If set to a value only the k highest scores in the ranking will be considered else considers all outputs.
45
  Defaults to None.
46
 
47
  sample_weight (`list` of `float`): Sample weights Defaults to None.
48
 
49
- ignore_ties ('boolean'): If set to true assumes that there are no ties (this is likely if predictions are continuous)
50
  for efficiency gains. Defaults to False.
51
 
52
  Returns:
@@ -64,7 +64,7 @@ Examples:
64
  >>> results = nDCG_metric.compute(references=[[10, 0, 0, 1, 5]], predictions=[[.1, .2, .3, 4, 70]], k=3)
65
  >>> print(results)
66
  {'nDCG@3': 0.4123818817534531}
67
- Example 3-There is only one relevant label but there is a tie and the model can't decide which one is the one.
68
  >>> accuracy_metric = evaluate.load("accuracy")
69
  >>> results = nDCG_metric.compute(references=[[1, 0, 0, 0, 0]], predictions=[[1, 1, 0, 0, 0]], k=1)
70
  >>> print(results)
 
13
  This ranking metric returns a high value if true labels are ranked high by
14
  ``predictions``.
15
 
16
+ If a value for k is given to the metric, it will only consider the k highest
17
  scores in the ranking
18
 
19
  References
 
41
 
42
  predictions ('list' of 'float'): Either predicted relevance, probability estimates or confidence values
43
 
44
+ k (int): If set to a value, only the k highest scores in the ranking will be considered, else considers all outputs.
45
  Defaults to None.
46
 
47
  sample_weight (`list` of `float`): Sample weights Defaults to None.
48
 
49
+ ignore_ties ('boolean'): If set to true, assumes that there are no ties (this is likely if predictions are continuous)
50
  for efficiency gains. Defaults to False.
51
 
52
  Returns:
 
64
  >>> results = nDCG_metric.compute(references=[[10, 0, 0, 1, 5]], predictions=[[.1, .2, .3, 4, 70]], k=3)
65
  >>> print(results)
66
  {'nDCG@3': 0.4123818817534531}
67
+ Example 3-There is only one relevant label, but there is a tie and the model can't decide which one is the one.
68
  >>> accuracy_metric = evaluate.load("accuracy")
69
  >>> results = nDCG_metric.compute(references=[[1, 0, 0, 0, 0]], predictions=[[1, 1, 0, 0, 0]], k=1)
70
  >>> print(results)