File size: 4,905 Bytes
7a2c9ac
 
 
 
 
 
 
 
4b42627
7a2c9ac
f80cddb
 
 
 
 
 
 
 
 
 
 
7a2c9ac
f80cddb
 
 
 
 
 
 
7a2c9ac
f80cddb
8afac0c
 
f80cddb
 
1e9ca29
 
f80cddb
0c39f3c
 
 
 
f80cddb
0c39f3c
 
 
 
f80cddb
df87b80
0c39f3c
 
 
 
708c129
0c39f3c
 
708c129
0c39f3c
 
 
 
 
 
f80cddb
 
 
6744dfe
f80cddb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b696ba4
8afac0c
 
 
 
 
 
885c69a
7d977ce
8afac0c
 
 
 
 
bd1f179
f80cddb
2ebe11d
 
f80cddb
 
69543a2
39eb2aa
69543a2
f80cddb
 
1e9ca29
 
0f94b4f
 
 
 
 
f80cddb
 
0bbee88
2ebe11d
917351d
bd1f179
0bbee88
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

import torch
import torch.nn.functional as F
import logging
import os
import os.path as osp

import sys
CODE_SPACE=os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

try:
    from mmcv.utils import Config, DictAction
except:
    from mmengine import Config, DictAction
from mono.utils.logger import setup_logger
import glob
from mono.utils.comm import init_env
from mono.model.monodepth_model import get_configured_monodepth_model
from mono.utils.running import load_ckpt
from mono.utils.do_test import transform_test_data_scalecano, get_prediction
from mono.utils.custom_data import load_from_annos, load_data

from mono.utils.avg_meter import MetricAverageMeter
from mono.utils.visualization import save_val_imgs, create_html, save_raw_imgs, save_normal_val_imgs
import cv2
from tqdm import tqdm
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt

from mono.utils.unproj_pcd import reconstruct_pcd, save_point_cloud
from mono.utils.transform import gray_to_colormap
from mono.utils.visualization import vis_surface_normal
import gradio as gr

#torch.hub.download_url_to_file('https://images.unsplash.com/photo-1437622368342-7a3d73a34c8f', 'turtle.jpg')
#torch.hub.download_url_to_file('https://images.unsplash.com/photo-1519066629447-267fffa62d4b', 'lions.jpg')

cfg_large = Config.fromfile('./mono/configs/HourglassDecoder/vit.raft5.large.py')
model_large = get_configured_monodepth_model(cfg_large, )
model_large, _,  _, _ = load_ckpt('./weight/metric_depth_vit_large_800k.pth', model_large, strict_match=False)
model_large.eval()

cfg_small = Config.fromfile('./mono/configs/HourglassDecoder/vit.raft5.small.py')
model_small = get_configured_monodepth_model(cfg_small, )
model_small, _,  _, _ = load_ckpt('./weight/metric_depth_vit_small_800k.pth', model_small, strict_match=False)
model_small.eval()

device = "cuda"
model_large.to(device)
model_small.to(device)

def depth_normal(img, model_selection="vit-small"):
    if model_selection == "vit-small":
        model = model_small
        cfg = cfg_small
    elif model_selection == "vit-large":
        model = model_large
        cfg = cfg_large

    else:
        raise NotImplementedError
    
    cv_image = np.array(img) 
    img = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB)
    intrinsic = [1000.0, 1000.0, img.shape[1]/2, img.shape[0]/2]
    rgb_input, cam_models_stacks, pad, label_scale_factor = transform_test_data_scalecano(img, intrinsic, cfg.data_basic)

    with torch.no_grad():
        pred_depth, pred_depth_scale, scale, output = get_prediction(
                    model = model,
                    input = rgb_input,
                    cam_model = cam_models_stacks,
                    pad_info = pad,
                    scale_info = label_scale_factor,
                    gt_depth = None,
                    normalize_scale = cfg.data_basic.depth_range[1],
                    ori_shape=[img.shape[0], img.shape[1]],
                )

        pred_normal = output['normal_out_list'][0][:, :3, :, :] 
        H, W = pred_normal.shape[2:]
        pred_normal = pred_normal[:, :, pad[0]:H-pad[1], pad[2]:W-pad[3]]

    pred_depth = pred_depth.squeeze().cpu().numpy()
    pred_depth[pred_depth<0] = 0
    pred_color = gray_to_colormap(pred_depth)

    pred_normal = pred_normal.squeeze()
    if pred_normal.size(0) == 3:
        pred_normal = pred_normal.permute(1,2,0)
    pred_color_normal = vis_surface_normal(pred_normal)
    
    ##formatted = (output * 255 / np.max(output)).astype('uint8')
    img = Image.fromarray(pred_color)
    img_normal = Image.fromarray(pred_color_normal)
    return img, img_normal
        
#inputs =  gr.inputs.Image(type='pil', label="Original Image")
#depth = gr.outputs.Image(type="pil",label="Output Depth")
#normal = gr.outputs.Image(type="pil",label="Output Normal")

title = "Metric3D"
description = "Gradio demo for Metric3D v1/v2 which takes in a single image for computing metric depth and surface normal. To use it, simply upload your image, or click one of the examples to load them. Learn more from our paper linked below."
article = "<p style='text-align: center'><a href='https://arxiv.org/pdf/2307.10984.pdf'>Metric3D: Towards Zero-shot Metric 3D Prediction from A Single Image</a> | <a href='https://github.com/YvanYin/Metric3D'>Github Repo</a></p>"

examples = [
    #["turtle.jpg"],
    #["lions.jpg"]
    ["files/gundam.jpg"],
    ["files/museum.jpg"],
    ["files/terra.jpg"],
    ["files/underwater.jpg"],
    ["files/venue.jpg"]
]

gr.Interface(
    depth_normal, 
    inputs=[gr.Image(type='pil', label="Original Image"), gr.Dropdown(["vit-small", "vit-large"], label="Model", info="Will support more models later!")], 
    outputs=[gr.Image(type="pil",label="Output Depth"), gr.Image(type="pil",label="Output Normal")], 
    title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch()