Spaces:
Runtime error
Runtime error
File size: 44,620 Bytes
8a32844 81610d3 8a32844 81610d3 8a32844 673c19d 8a32844 673c19d 8a32844 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 |
import torch
import torch.nn as nn
import numpy as np
import math
import torch.nn.functional as F
# LORA finetuning originally by edwardjhu
class LoRALayer():
def __init__(
self,
r: int,
lora_alpha: int,
lora_dropout: float,
merge_weights: bool,
):
self.r = r
self.lora_alpha = lora_alpha
# Optional dropout
if lora_dropout > 0.:
self.lora_dropout = nn.Dropout(p=lora_dropout)
else:
self.lora_dropout = lambda x: x
# Mark the weight as unmerged
self.merged = False
self.merge_weights = merge_weights
class LoRALinear(nn.Linear, LoRALayer):
# LoRA implemented in a dense layer
def __init__(
self,
in_features: int,
out_features: int,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.,
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
merge_weights: bool = True,
**kwargs
):
nn.Linear.__init__(self, in_features, out_features, **kwargs)
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout,
merge_weights=merge_weights)
self.fan_in_fan_out = fan_in_fan_out
# Actual trainable parameters
if r > 0:
self.lora_A = nn.Parameter(self.weight.new_zeros((r, in_features)))
self.lora_B = nn.Parameter(self.weight.new_zeros((out_features, r)))
self.scaling = self.lora_alpha / self.r
# Freezing the pre-trained weight matrix
self.weight.requires_grad = False
self.reset_parameters()
if fan_in_fan_out:
self.weight.data = self.weight.data.transpose(0, 1)
def reset_parameters(self):
#nn.Linear.reset_parameters(self)
if hasattr(self, 'lora_A'):
# initialize B the same way as the default for nn.Linear and A to zero
# this is different than what is described in the paper but should not affect performance
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
nn.init.zeros_(self.lora_B)
# def train(self, mode: bool = True):
# def T(w):
# return w.transpose(0, 1) if self.fan_in_fan_out else w
# nn.Linear.train(self, mode)
# if mode:
# if self.merge_weights and self.merged:
# # Make sure that the weights are not merged
# if self.r > 0:
# self.weight.data -= T(self.lora_B @ self.lora_A) * self.scaling
# self.merged = False
# else:
# if self.merge_weights and not self.merged:
# # Merge the weights and mark it
# if self.r > 0:
# self.weight.data += T(self.lora_B @ self.lora_A) * self.scaling
# self.merged = True
def forward(self, x: torch.Tensor):
def T(w):
return w.transpose(0, 1) if self.fan_in_fan_out else w
if self.r > 0 and not self.merged:
result = F.linear(x, T(self.weight), bias=self.bias)
result += (self.lora_dropout(x) @ self.lora_A.transpose(0, 1) @ self.lora_B.transpose(0, 1)) * self.scaling
return result
else:
return F.linear(x, T(self.weight), bias=self.bias)
class ConvLoRA(nn.Conv2d, LoRALayer):
def __init__(self, in_channels, out_channels, kernel_size, r=0, lora_alpha=1, lora_dropout=0., merge_weights=True, **kwargs):
#self.conv = conv_module(in_channels, out_channels, kernel_size, **kwargs)
nn.Conv2d.__init__(self, in_channels, out_channels, kernel_size, **kwargs)
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, merge_weights=merge_weights)
assert isinstance(kernel_size, int)
# Actual trainable parameters
if r > 0:
self.lora_A = nn.Parameter(
self.weight.new_zeros((r * kernel_size, in_channels * kernel_size))
)
self.lora_B = nn.Parameter(
self.weight.new_zeros((out_channels//self.groups*kernel_size, r*kernel_size))
)
self.scaling = self.lora_alpha / self.r
# Freezing the pre-trained weight matrix
self.weight.requires_grad = False
self.reset_parameters()
self.merged = False
def reset_parameters(self):
#self.conv.reset_parameters()
if hasattr(self, 'lora_A'):
# initialize A the same way as the default for nn.Linear and B to zero
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
nn.init.zeros_(self.lora_B)
# def train(self, mode=True):
# super(ConvLoRA, self).train(mode)
# if mode:
# if self.merge_weights and self.merged:
# if self.r > 0:
# # Make sure that the weights are not merged
# self.conv.weight.data -= (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling
# self.merged = False
# else:
# if self.merge_weights and not self.merged:
# if self.r > 0:
# # Merge the weights and mark it
# self.conv.weight.data += (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling
# self.merged = True
def forward(self, x):
if self.r > 0 and not self.merged:
# return self.conv._conv_forward(
# x,
# self.conv.weight + (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling,
# self.conv.bias
# )
weight = self.weight + (self.lora_B @ self.lora_A).view(self.weight.shape) * self.scaling
bias = self.bias
return F.conv2d(x, weight, bias=bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups)
else:
return F.conv2d(x, self.weight, bias=self.bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups)
class ConvTransposeLoRA(nn.ConvTranspose2d, LoRALayer):
def __init__(self, in_channels, out_channels, kernel_size, r=0, lora_alpha=1, lora_dropout=0., merge_weights=True, **kwargs):
#self.conv = conv_module(in_channels, out_channels, kernel_size, **kwargs)
nn.ConvTranspose2d.__init__(self, in_channels, out_channels, kernel_size, **kwargs)
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, merge_weights=merge_weights)
assert isinstance(kernel_size, int)
# Actual trainable parameters
if r > 0:
self.lora_A = nn.Parameter(
self.weight.new_zeros((r * kernel_size, in_channels * kernel_size))
)
self.lora_B = nn.Parameter(
self.weight.new_zeros((out_channels//self.groups*kernel_size, r*kernel_size))
)
self.scaling = self.lora_alpha / self.r
# Freezing the pre-trained weight matrix
self.weight.requires_grad = False
self.reset_parameters()
self.merged = False
def reset_parameters(self):
#self.conv.reset_parameters()
if hasattr(self, 'lora_A'):
# initialize A the same way as the default for nn.Linear and B to zero
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
nn.init.zeros_(self.lora_B)
# def train(self, mode=True):
# super(ConvTransposeLoRA, self).train(mode)
# if mode:
# if self.merge_weights and self.merged:
# if self.r > 0:
# # Make sure that the weights are not merged
# self.conv.weight.data -= (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling
# self.merged = False
# else:
# if self.merge_weights and not self.merged:
# if self.r > 0:
# # Merge the weights and mark it
# self.conv.weight.data += (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling
# self.merged = True
def forward(self, x):
if self.r > 0 and not self.merged:
weight = self.weight + (self.lora_B @ self.lora_A).view(self.weight.shape) * self.scaling
bias = self.bias
return F.conv_transpose2d(x, weight,
bias=bias, stride=self.stride, padding=self.padding, output_padding=self.output_padding,
groups=self.groups, dilation=self.dilation)
else:
return F.conv_transpose2d(x, self.weight,
bias=self.bias, stride=self.stride, padding=self.padding, output_padding=self.output_padding,
groups=self.groups, dilation=self.dilation)
#return self.conv(x)
class Conv2dLoRA(ConvLoRA):
def __init__(self, *args, **kwargs):
super(Conv2dLoRA, self).__init__(*args, **kwargs)
class ConvTranspose2dLoRA(ConvTransposeLoRA):
def __init__(self, *args, **kwargs):
super(ConvTranspose2dLoRA, self).__init__(*args, **kwargs)
def compute_depth_expectation(prob, depth_values):
depth_values = depth_values.view(*depth_values.shape, 1, 1)
depth = torch.sum(prob * depth_values, 1)
return depth
def interpolate_float32(x, size=None, scale_factor=None, mode='nearest', align_corners=None):
#with torch.autocast(device_type='cuda', dtype=torch.bfloat16, enabled=False):
return F.interpolate(x.float(), size=size, scale_factor=scale_factor, mode=mode, align_corners=align_corners)
# def upflow8(flow, mode='bilinear'):
# new_size = (8 * flow.shape[2], 8 * flow.shape[3])
# return 8 * F.interpolate(flow, size=new_size, mode=mode, align_corners=True)
def upflow4(flow, mode='bilinear'):
new_size = (4 * flow.shape[2], 4 * flow.shape[3])
#with torch.autocast(device_type='cuda', dtype=torch.bfloat16, enabled=False):
return F.interpolate(flow, size=new_size, mode=mode, align_corners=True)
def coords_grid(batch, ht, wd):
# coords = torch.meshgrid(torch.arange(ht), torch.arange(wd))
coords = (torch.zeros((ht, wd)), torch.zeros((ht, wd)), torch.zeros((ht, wd)), torch.zeros((ht, wd)), torch.zeros((ht, wd)), torch.zeros((ht, wd)))
coords = torch.stack(coords[::-1], dim=0).float()
return coords[None].repeat(batch, 1, 1, 1)
def norm_normalize(norm_out):
min_kappa = 0.01
norm_x, norm_y, norm_z, kappa = torch.split(norm_out, 1, dim=1)
norm = torch.sqrt(norm_x ** 2.0 + norm_y ** 2.0 + norm_z ** 2.0) + 1e-10
kappa = F.elu(kappa) + 1.0 + min_kappa
final_out = torch.cat([norm_x / norm, norm_y / norm, norm_z / norm, kappa], dim=1)
return final_out
# uncertainty-guided sampling (only used during training)
@torch.no_grad()
def sample_points(init_normal, gt_norm_mask, sampling_ratio, beta):
device = init_normal.device
B, _, H, W = init_normal.shape
N = int(sampling_ratio * H * W)
beta = beta
# uncertainty map
uncertainty_map = -1 * init_normal[:, -1, :, :] # B, H, W
# gt_invalid_mask (B, H, W)
if gt_norm_mask is not None:
gt_invalid_mask = F.interpolate(gt_norm_mask.float(), size=[H, W], mode='nearest')
gt_invalid_mask = gt_invalid_mask[:, 0, :, :] < 0.5
uncertainty_map[gt_invalid_mask] = -1e4
# (B, H*W)
_, idx = uncertainty_map.view(B, -1).sort(1, descending=True)
# importance sampling
if int(beta * N) > 0:
importance = idx[:, :int(beta * N)] # B, beta*N
# remaining
remaining = idx[:, int(beta * N):] # B, H*W - beta*N
# coverage
num_coverage = N - int(beta * N)
if num_coverage <= 0:
samples = importance
else:
coverage_list = []
for i in range(B):
idx_c = torch.randperm(remaining.size()[1]) # shuffles "H*W - beta*N"
coverage_list.append(remaining[i, :][idx_c[:num_coverage]].view(1, -1)) # 1, N-beta*N
coverage = torch.cat(coverage_list, dim=0) # B, N-beta*N
samples = torch.cat((importance, coverage), dim=1) # B, N
else:
# remaining
remaining = idx[:, :] # B, H*W
# coverage
num_coverage = N
coverage_list = []
for i in range(B):
idx_c = torch.randperm(remaining.size()[1]) # shuffles "H*W - beta*N"
coverage_list.append(remaining[i, :][idx_c[:num_coverage]].view(1, -1)) # 1, N-beta*N
coverage = torch.cat(coverage_list, dim=0) # B, N-beta*N
samples = coverage
# point coordinates
rows_int = samples // W # 0 for first row, H-1 for last row
rows_float = rows_int / float(H-1) # 0 to 1.0
rows_float = (rows_float * 2.0) - 1.0 # -1.0 to 1.0
cols_int = samples % W # 0 for first column, W-1 for last column
cols_float = cols_int / float(W-1) # 0 to 1.0
cols_float = (cols_float * 2.0) - 1.0 # -1.0 to 1.0
point_coords = torch.zeros(B, 1, N, 2)
point_coords[:, 0, :, 0] = cols_float # x coord
point_coords[:, 0, :, 1] = rows_float # y coord
point_coords = point_coords.to(device)
return point_coords, rows_int, cols_int
class FlowHead(nn.Module):
def __init__(self, input_dim=128, hidden_dim=256, output_dim_depth=2, output_dim_norm=4, tuning_mode=None):
super(FlowHead, self).__init__()
self.conv1d = Conv2dLoRA(input_dim, hidden_dim // 2, 3, padding=1, r = 8 if tuning_mode == 'lora' else 0)
self.conv2d = Conv2dLoRA(hidden_dim // 2, output_dim_depth, 3, padding=1, r = 8 if tuning_mode == 'lora' else 0)
self.conv1n = Conv2dLoRA(input_dim, hidden_dim // 2, 3, padding=1, r = 8 if tuning_mode == 'lora' else 0)
self.conv2n = Conv2dLoRA(hidden_dim // 2, output_dim_norm, 3, padding=1, r = 8 if tuning_mode == 'lora' else 0)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
depth = self.conv2d(self.relu(self.conv1d(x)))
normal = self.conv2n(self.relu(self.conv1n(x)))
return torch.cat((depth, normal), dim=1)
class ConvGRU(nn.Module):
def __init__(self, hidden_dim, input_dim, kernel_size=3, tuning_mode=None):
super(ConvGRU, self).__init__()
self.convz = Conv2dLoRA(hidden_dim+input_dim, hidden_dim, kernel_size, padding=kernel_size//2, r = 8 if tuning_mode == 'lora' else 0)
self.convr = Conv2dLoRA(hidden_dim+input_dim, hidden_dim, kernel_size, padding=kernel_size//2, r = 8 if tuning_mode == 'lora' else 0)
self.convq = Conv2dLoRA(hidden_dim+input_dim, hidden_dim, kernel_size, padding=kernel_size//2, r = 8 if tuning_mode == 'lora' else 0)
def forward(self, h, cz, cr, cq, *x_list):
x = torch.cat(x_list, dim=1)
hx = torch.cat([h, x], dim=1)
z = torch.sigmoid((self.convz(hx) + cz))
r = torch.sigmoid((self.convr(hx) + cr))
q = torch.tanh((self.convq(torch.cat([r*h, x], dim=1)) + cq))
# z = torch.sigmoid((self.convz(hx) + cz).float())
# r = torch.sigmoid((self.convr(hx) + cr).float())
# q = torch.tanh((self.convq(torch.cat([r*h, x], dim=1)) + cq).float())
h = (1-z) * h + z * q
return h
def pool2x(x):
return F.avg_pool2d(x, 3, stride=2, padding=1)
def pool4x(x):
return F.avg_pool2d(x, 5, stride=4, padding=1)
def interp(x, dest):
interp_args = {'mode': 'bilinear', 'align_corners': True}
return interpolate_float32(x, dest.shape[2:], **interp_args)
class BasicMultiUpdateBlock(nn.Module):
def __init__(self, args, hidden_dims=[], out_dims=2, tuning_mode=None):
super().__init__()
self.args = args
self.n_gru_layers = args.model.decode_head.n_gru_layers # 3
self.n_downsample = args.model.decode_head.n_downsample # 3, resolution of the disparity field (1/2^K)
# self.encoder = BasicMotionEncoder(args)
# encoder_output_dim = 128 # if there is corr volume
encoder_output_dim = 6 # no corr volume
self.gru08 = ConvGRU(hidden_dims[2], encoder_output_dim + hidden_dims[1] * (self.n_gru_layers > 1), tuning_mode=tuning_mode)
self.gru16 = ConvGRU(hidden_dims[1], hidden_dims[0] * (self.n_gru_layers == 3) + hidden_dims[2], tuning_mode=tuning_mode)
self.gru32 = ConvGRU(hidden_dims[0], hidden_dims[1], tuning_mode=tuning_mode)
self.flow_head = FlowHead(hidden_dims[2], hidden_dim=2*hidden_dims[2], tuning_mode=tuning_mode)
factor = 2**self.n_downsample
self.mask = nn.Sequential(
Conv2dLoRA(hidden_dims[2], hidden_dims[2], 3, padding=1, r = 8 if tuning_mode == 'lora' else 0),
nn.ReLU(inplace=True),
Conv2dLoRA(hidden_dims[2], (factor**2)*9, 1, padding=0, r = 8 if tuning_mode == 'lora' else 0))
def forward(self, net, inp, corr=None, flow=None, iter08=True, iter16=True, iter32=True, update=True):
if iter32:
net[2] = self.gru32(net[2], *(inp[2]), pool2x(net[1]))
if iter16:
if self.n_gru_layers > 2:
net[1] = self.gru16(net[1], *(inp[1]), interp(pool2x(net[0]), net[1]), interp(net[2], net[1]))
else:
net[1] = self.gru16(net[1], *(inp[1]), interp(pool2x(net[0]), net[1]))
if iter08:
if corr is not None:
motion_features = self.encoder(flow, corr)
else:
motion_features = flow
if self.n_gru_layers > 1:
net[0] = self.gru08(net[0], *(inp[0]), motion_features, interp(net[1], net[0]))
else:
net[0] = self.gru08(net[0], *(inp[0]), motion_features)
if not update:
return net
delta_flow = self.flow_head(net[0])
# scale mask to balence gradients
mask = .25 * self.mask(net[0])
return net, mask, delta_flow
class LayerNorm2d(nn.LayerNorm):
def __init__(self, dim):
super(LayerNorm2d, self).__init__(dim)
def forward(self, x):
x = x.permute(0, 2, 3, 1).contiguous()
x = super(LayerNorm2d, self).forward(x)
x = x.permute(0, 3, 1, 2).contiguous()
return x
class ResidualBlock(nn.Module):
def __init__(self, in_planes, planes, norm_fn='group', stride=1, tuning_mode=None):
super(ResidualBlock, self).__init__()
self.conv1 = Conv2dLoRA(in_planes, planes, kernel_size=3, padding=1, stride=stride, r = 8 if tuning_mode == 'lora' else 0)
self.conv2 = Conv2dLoRA(planes, planes, kernel_size=3, padding=1, r = 8 if tuning_mode == 'lora' else 0)
self.relu = nn.ReLU(inplace=True)
num_groups = planes // 8
if norm_fn == 'group':
self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
if not (stride == 1 and in_planes == planes):
self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
elif norm_fn == 'batch':
self.norm1 = nn.BatchNorm2d(planes)
self.norm2 = nn.BatchNorm2d(planes)
if not (stride == 1 and in_planes == planes):
self.norm3 = nn.BatchNorm2d(planes)
elif norm_fn == 'instance':
self.norm1 = nn.InstanceNorm2d(planes)
self.norm2 = nn.InstanceNorm2d(planes)
if not (stride == 1 and in_planes == planes):
self.norm3 = nn.InstanceNorm2d(planes)
elif norm_fn == 'layer':
self.norm1 = LayerNorm2d(planes)
self.norm2 = LayerNorm2d(planes)
if not (stride == 1 and in_planes == planes):
self.norm3 = LayerNorm2d(planes)
elif norm_fn == 'none':
self.norm1 = nn.Sequential()
self.norm2 = nn.Sequential()
if not (stride == 1 and in_planes == planes):
self.norm3 = nn.Sequential()
if stride == 1 and in_planes == planes:
self.downsample = None
else:
self.downsample = nn.Sequential(
Conv2dLoRA(in_planes, planes, kernel_size=1, stride=stride, r = 8 if tuning_mode == 'lora' else 0), self.norm3)
def forward(self, x):
y = x
y = self.conv1(y)
y = self.norm1(y)
y = self.relu(y)
y = self.conv2(y)
y = self.norm2(y)
y = self.relu(y)
if self.downsample is not None:
x = self.downsample(x)
return self.relu(x+y)
class ContextFeatureEncoder(nn.Module):
'''
Encoder features are used to:
1. initialize the hidden state of the update operator
2. and also injected into the GRU during each iteration of the update operator
'''
def __init__(self, in_dim, output_dim, tuning_mode=None):
'''
in_dim = [x4, x8, x16, x32]
output_dim = [hindden_dims, context_dims]
[[x4,x8,x16,x32],[x4,x8,x16,x32]]
'''
super().__init__()
output_list = []
for dim in output_dim:
conv_out = nn.Sequential(
ResidualBlock(in_dim[0], dim[0], 'layer', stride=1, tuning_mode=tuning_mode),
Conv2dLoRA(dim[0], dim[0], 3, padding=1, r = 8 if tuning_mode == 'lora' else 0))
output_list.append(conv_out)
self.outputs04 = nn.ModuleList(output_list)
output_list = []
for dim in output_dim:
conv_out = nn.Sequential(
ResidualBlock(in_dim[1], dim[1], 'layer', stride=1, tuning_mode=tuning_mode),
Conv2dLoRA(dim[1], dim[1], 3, padding=1, r = 8 if tuning_mode == 'lora' else 0))
output_list.append(conv_out)
self.outputs08 = nn.ModuleList(output_list)
output_list = []
for dim in output_dim:
conv_out = nn.Sequential(
ResidualBlock(in_dim[2], dim[2], 'layer', stride=1, tuning_mode=tuning_mode),
Conv2dLoRA(dim[2], dim[2], 3, padding=1, r = 8 if tuning_mode == 'lora' else 0))
output_list.append(conv_out)
self.outputs16 = nn.ModuleList(output_list)
# output_list = []
# for dim in output_dim:
# conv_out = Conv2dLoRA(in_dim[3], dim[3], 3, padding=1)
# output_list.append(conv_out)
# self.outputs32 = nn.ModuleList(output_list)
def forward(self, encoder_features):
x_4, x_8, x_16, x_32 = encoder_features
outputs04 = [f(x_4) for f in self.outputs04]
outputs08 = [f(x_8) for f in self.outputs08]
outputs16 = [f(x_16)for f in self.outputs16]
# outputs32 = [f(x_32) for f in self.outputs32]
return (outputs04, outputs08, outputs16)
class ConvBlock(nn.Module):
# reimplementation of DPT
def __init__(self, channels, tuning_mode=None):
super(ConvBlock, self).__init__()
self.act = nn.ReLU(inplace=True)
self.conv1 = Conv2dLoRA(
channels,
channels,
kernel_size=3,
stride=1,
padding=1,
r = 8 if tuning_mode == 'lora' else 0
)
self.conv2 = Conv2dLoRA(
channels,
channels,
kernel_size=3,
stride=1,
padding=1,
r = 8 if tuning_mode == 'lora' else 0
)
def forward(self, x):
out = self.act(x)
out = self.conv1(out)
out = self.act(out)
out = self.conv2(out)
return x + out
class FuseBlock(nn.Module):
# reimplementation of DPT
def __init__(self, in_channels, out_channels, fuse=True, upsample=True, scale_factor=2, tuning_mode=None):
super(FuseBlock, self).__init__()
self.fuse = fuse
self.scale_factor = scale_factor
self.way_trunk = ConvBlock(in_channels, tuning_mode=tuning_mode)
if self.fuse:
self.way_branch = ConvBlock(in_channels, tuning_mode=tuning_mode)
self.out_conv = Conv2dLoRA(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
r = 8 if tuning_mode == 'lora' else 0
)
self.upsample = upsample
def forward(self, x1, x2=None):
if x2 is not None:
x2 = self.way_branch(x2)
x1 = x1 + x2
out = self.way_trunk(x1)
if self.upsample:
out = interpolate_float32(
out, scale_factor=self.scale_factor, mode="bilinear", align_corners=True
)
out = self.out_conv(out)
return out
class Readout(nn.Module):
# From DPT
def __init__(self, in_features, use_cls_token=True, num_register_tokens=0, tuning_mode=None):
super(Readout, self).__init__()
self.use_cls_token = use_cls_token
if self.use_cls_token == True:
self.project_patch = LoRALinear(in_features, in_features, r = 8 if tuning_mode == 'lora' else 0)
self.project_learn = LoRALinear((1 + num_register_tokens) * in_features, in_features, bias=False, r = 8 if tuning_mode == 'lora' else 0)
self.act = nn.GELU()
else:
self.project = nn.Identity()
def forward(self, x):
if self.use_cls_token == True:
x_patch = self.project_patch(x[0])
x_learn = self.project_learn(x[1])
x_learn = x_learn.expand_as(x_patch).contiguous()
features = x_patch + x_learn
return self.act(features)
else:
return self.project(x)
class Token2Feature(nn.Module):
# From DPT
def __init__(self, vit_channel, feature_channel, scale_factor, use_cls_token=True, num_register_tokens=0, tuning_mode=None):
super(Token2Feature, self).__init__()
self.scale_factor = scale_factor
self.readoper = Readout(in_features=vit_channel, use_cls_token=use_cls_token, num_register_tokens=num_register_tokens, tuning_mode=tuning_mode)
if scale_factor > 1 and isinstance(scale_factor, int):
self.sample = ConvTranspose2dLoRA(r = 8 if tuning_mode == 'lora' else 0,
in_channels=vit_channel,
out_channels=feature_channel,
kernel_size=scale_factor,
stride=scale_factor,
padding=0,
)
elif scale_factor > 1:
self.sample = nn.Sequential(
# Upsample2(upscale=scale_factor),
# nn.Upsample(scale_factor=scale_factor),
Conv2dLoRA(r = 8 if tuning_mode == 'lora' else 0,
in_channels=vit_channel,
out_channels=feature_channel,
kernel_size=1,
stride=1,
padding=0,
),
)
elif scale_factor < 1:
scale_factor = int(1.0 / scale_factor)
self.sample = Conv2dLoRA(r = 8 if tuning_mode == 'lora' else 0,
in_channels=vit_channel,
out_channels=feature_channel,
kernel_size=scale_factor+1,
stride=scale_factor,
padding=1,
)
else:
self.sample = nn.Identity()
def forward(self, x):
x = self.readoper(x)
#if use_cls_token == True:
x = x.permute(0, 3, 1, 2).contiguous()
if isinstance(self.scale_factor, float):
x = interpolate_float32(x.float(), scale_factor=self.scale_factor, mode='nearest')
x = self.sample(x)
return x
class EncoderFeature(nn.Module):
def __init__(self, vit_channel, num_ch_dec=[256, 512, 1024, 1024], use_cls_token=True, num_register_tokens=0, tuning_mode=None):
super(EncoderFeature, self).__init__()
self.vit_channel = vit_channel
self.num_ch_dec = num_ch_dec
self.read_3 = Token2Feature(self.vit_channel, self.num_ch_dec[3], scale_factor=1, use_cls_token=use_cls_token, num_register_tokens=num_register_tokens, tuning_mode=tuning_mode)
self.read_2 = Token2Feature(self.vit_channel, self.num_ch_dec[2], scale_factor=1, use_cls_token=use_cls_token, num_register_tokens=num_register_tokens, tuning_mode=tuning_mode)
self.read_1 = Token2Feature(self.vit_channel, self.num_ch_dec[1], scale_factor=2, use_cls_token=use_cls_token, num_register_tokens=num_register_tokens, tuning_mode=tuning_mode)
self.read_0 = Token2Feature(self.vit_channel, self.num_ch_dec[0], scale_factor=7/2, use_cls_token=use_cls_token, num_register_tokens=num_register_tokens, tuning_mode=tuning_mode)
def forward(self, ref_feature):
x = self.read_3(ref_feature[3]) # 1/14
x2 = self.read_2(ref_feature[2]) # 1/14
x1 = self.read_1(ref_feature[1]) # 1/7
x0 = self.read_0(ref_feature[0]) # 1/4
return x, x2, x1, x0
class DecoderFeature(nn.Module):
def __init__(self, vit_channel, num_ch_dec=[128, 256, 512, 1024, 1024], use_cls_token=True, tuning_mode=None):
super(DecoderFeature, self).__init__()
self.vit_channel = vit_channel
self.num_ch_dec = num_ch_dec
self.upconv_3 = FuseBlock(
self.num_ch_dec[4],
self.num_ch_dec[3],
fuse=False, upsample=False, tuning_mode=tuning_mode)
self.upconv_2 = FuseBlock(
self.num_ch_dec[3],
self.num_ch_dec[2],
tuning_mode=tuning_mode)
self.upconv_1 = FuseBlock(
self.num_ch_dec[2],
self.num_ch_dec[1] + 2,
scale_factor=7/4,
tuning_mode=tuning_mode)
# self.upconv_0 = FuseBlock(
# self.num_ch_dec[1],
# self.num_ch_dec[0] + 1,
# )
def forward(self, ref_feature):
x, x2, x1, x0 = ref_feature # 1/14 1/14 1/7 1/4
x = self.upconv_3(x) # 1/14
x = self.upconv_2(x, x2) # 1/7
x = self.upconv_1(x, x1) # 1/4
# x = self.upconv_0(x, x0) # 4/7
return x
class RAFTDepthNormalDPT5(nn.Module):
def __init__(self, cfg):
super().__init__()
self.in_channels = cfg.model.decode_head.in_channels # [1024, 1024, 1024, 1024]
self.feature_channels = cfg.model.decode_head.feature_channels # [256, 512, 1024, 1024] [2/7, 1/7, 1/14, 1/14]
self.decoder_channels = cfg.model.decode_head.decoder_channels # [128, 256, 512, 1024, 1024] [-, 1/4, 1/7, 1/14, 1/14]
self.use_cls_token = cfg.model.decode_head.use_cls_token
self.up_scale = cfg.model.decode_head.up_scale
self.num_register_tokens = cfg.model.decode_head.num_register_tokens
self.min_val = cfg.data_basic.depth_normalize[0]
self.max_val = cfg.data_basic.depth_normalize[1]
self.regress_scale = 100.0\
try:
tuning_mode = cfg.model.decode_head.tuning_mode
except:
tuning_mode = None
self.tuning_mode = tuning_mode
self.hidden_dims = self.context_dims = cfg.model.decode_head.hidden_channels # [128, 128, 128, 128]
self.n_gru_layers = cfg.model.decode_head.n_gru_layers # 3
self.n_downsample = cfg.model.decode_head.n_downsample # 3, resolution of the disparity field (1/2^K)
self.iters = cfg.model.decode_head.iters # 22
self.slow_fast_gru = cfg.model.decode_head.slow_fast_gru # True
self.num_depth_regressor_anchor = 256 # 512
self.used_res_channel = self.decoder_channels[1] # now, use 2/7 res
self.token2feature = EncoderFeature(self.in_channels[0], self.feature_channels, self.use_cls_token, self.num_register_tokens, tuning_mode=tuning_mode)
self.decoder_mono = DecoderFeature(self.in_channels, self.decoder_channels, tuning_mode=tuning_mode)
self.depth_regressor = nn.Sequential(
Conv2dLoRA(self.used_res_channel,
self.num_depth_regressor_anchor,
kernel_size=3,
padding=1, r = 8 if tuning_mode == 'lora' else 0),
# nn.BatchNorm2d(self.num_depth_regressor_anchor),
nn.ReLU(inplace=True),
Conv2dLoRA(self.num_depth_regressor_anchor,
self.num_depth_regressor_anchor,
kernel_size=1, r = 8 if tuning_mode == 'lora' else 0),
)
self.normal_predictor = nn.Sequential(
Conv2dLoRA(self.used_res_channel,
128,
kernel_size=3,
padding=1, r = 8 if tuning_mode == 'lora' else 0,),
# nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
Conv2dLoRA(128, 128, kernel_size=1, r = 8 if tuning_mode == 'lora' else 0), nn.ReLU(inplace=True),
Conv2dLoRA(128, 128, kernel_size=1, r = 8 if tuning_mode == 'lora' else 0), nn.ReLU(inplace=True),
Conv2dLoRA(128, 3, kernel_size=1, r = 8 if tuning_mode == 'lora' else 0),
)
self.context_feature_encoder = ContextFeatureEncoder(self.feature_channels, [self.hidden_dims, self.context_dims], tuning_mode=tuning_mode)
self.context_zqr_convs = nn.ModuleList([Conv2dLoRA(self.context_dims[i], self.hidden_dims[i]*3, 3, padding=3//2, r = 8 if tuning_mode == 'lora' else 0) for i in range(self.n_gru_layers)])
self.update_block = BasicMultiUpdateBlock(cfg, hidden_dims=self.hidden_dims, out_dims=6, tuning_mode=tuning_mode)
self.relu = nn.ReLU(inplace=True)
def get_bins(self, bins_num):
depth_bins_vec = torch.linspace(math.log(self.min_val), math.log(self.max_val), bins_num, device="cuda")
#depth_bins_vec = torch.linspace(math.log(self.min_val), math.log(self.max_val), bins_num, device="cpu")
depth_bins_vec = torch.exp(depth_bins_vec)
return depth_bins_vec
def register_depth_expectation_anchor(self, bins_num, B):
depth_bins_vec = self.get_bins(bins_num)
depth_bins_vec = depth_bins_vec.unsqueeze(0).repeat(B, 1)
self.register_buffer('depth_expectation_anchor', depth_bins_vec, persistent=False)
def clamp(self, x):
y = self.relu(x - self.min_val) + self.min_val
y = self.max_val - self.relu(self.max_val - y)
return y
def regress_depth(self, feature_map_d):
prob_feature = self.depth_regressor(feature_map_d)
prob = prob_feature.softmax(dim=1)
#prob = prob_feature.float().softmax(dim=1)
## Error logging
if torch.isnan(prob).any():
print('prob_feat_nan!!!')
if torch.isinf(prob).any():
print('prob_feat_inf!!!')
# h = prob[0,:,0,0].cpu().numpy().reshape(-1)
# import matplotlib.pyplot as plt
# plt.bar(range(len(h)), h)
B = prob.shape[0]
if "depth_expectation_anchor" not in self._buffers:
self.register_depth_expectation_anchor(self.num_depth_regressor_anchor, B)
d = compute_depth_expectation(
prob,
self.depth_expectation_anchor[:B, ...]).unsqueeze(1)
## Error logging
if torch.isnan(d ).any():
print('d_nan!!!')
if torch.isinf(d ).any():
print('d_inf!!!')
return (self.clamp(d) - self.max_val)/ self.regress_scale, prob_feature
def pred_normal(self, feature_map, confidence):
normal_out = self.normal_predictor(feature_map)
## Error logging
if torch.isnan(normal_out).any():
print('norm_nan!!!')
if torch.isinf(normal_out).any():
print('norm_feat_inf!!!')
return norm_normalize(torch.cat([normal_out, confidence], dim=1))
#return norm_normalize(torch.cat([normal_out, confidence], dim=1).float())
#def create_mesh_grid(self, height, width, batch, device="cpu", set_buffer=True):
def create_mesh_grid(self, height, width, batch, device="cuda", set_buffer=True):
y, x = torch.meshgrid([torch.arange(0, height, dtype=torch.float32, device=device),
torch.arange(0, width, dtype=torch.float32, device=device)], indexing='ij')
meshgrid = torch.stack((x, y))
meshgrid = meshgrid.unsqueeze(0).repeat(batch, 1, 1, 1)
#self.register_buffer('meshgrid', meshgrid, persistent=False)
return meshgrid
def upsample_flow(self, flow, mask):
""" Upsample flow field [H/8, W/8, 2] -> [H, W, 2] using convex combination """
N, D, H, W = flow.shape
factor = 2 ** self.n_downsample
mask = mask.view(N, 1, 9, factor, factor, H, W)
mask = torch.softmax(mask, dim=2)
#mask = torch.softmax(mask.float(), dim=2)
#up_flow = F.unfold(factor * flow, [3,3], padding=1)
up_flow = F.unfold(flow, [3,3], padding=1)
up_flow = up_flow.view(N, D, 9, 1, 1, H, W)
up_flow = torch.sum(mask * up_flow, dim=2)
up_flow = up_flow.permute(0, 1, 4, 2, 5, 3)
return up_flow.reshape(N, D, factor*H, factor*W)
def initialize_flow(self, img):
""" Flow is represented as difference between two coordinate grids flow = coords1 - coords0"""
N, _, H, W = img.shape
coords0 = coords_grid(N, H, W).to(img.device)
coords1 = coords_grid(N, H, W).to(img.device)
return coords0, coords1
def upsample(self, x, scale_factor=2):
"""Upsample input tensor by a factor of 2
"""
return interpolate_float32(x, scale_factor=scale_factor*self.up_scale/8, mode="nearest")
def forward(self, vit_features, **kwargs):
## read vit token to multi-scale features
B, H, W, _, _, num_register_tokens = vit_features[1]
vit_features = vit_features[0]
## Error logging
if torch.isnan(vit_features[0]).any():
print('vit_feature_nan!!!')
if torch.isinf(vit_features[0]).any():
print('vit_feature_inf!!!')
if self.use_cls_token == True:
vit_features = [[ft[:, 1+num_register_tokens:, :].view(B, H, W, self.in_channels[0]), \
ft[:, 0:1+num_register_tokens, :].view(B, 1, 1, self.in_channels[0] * (1+num_register_tokens))] for ft in vit_features]
else:
vit_features = [ft.view(B, H, W, self.in_channels[0]) for ft in vit_features]
encoder_features = self.token2feature(vit_features) # 1/14, 1/14, 1/7, 1/4
## Error logging
for en_ft in encoder_features:
if torch.isnan(en_ft).any():
print('decoder_feature_nan!!!')
print(en_ft.shape)
if torch.isinf(en_ft).any():
print('decoder_feature_inf!!!')
print(en_ft.shape)
## decode features to init-depth (and confidence)
ref_feat= self.decoder_mono(encoder_features) # now, 1/4 for depth
## Error logging
if torch.isnan(ref_feat).any():
print('ref_feat_nan!!!')
if torch.isinf(ref_feat).any():
print('ref_feat_inf!!!')
feature_map = ref_feat[:, :-2, :, :] # feature map share of depth and normal prediction
depth_confidence_map = ref_feat[:, -2:-1, :, :]
normal_confidence_map = ref_feat[:, -1:, :, :]
depth_pred, binmap = self.regress_depth(feature_map) # regress bin for depth
normal_pred = self.pred_normal(feature_map, normal_confidence_map) # mlp for normal
depth_init = torch.cat((depth_pred, depth_confidence_map, normal_pred), dim=1) # (N, 1+1+4, H, W)
## encoder features to context-feature for init-hidden-state and contex-features
cnet_list = self.context_feature_encoder(encoder_features[::-1])
net_list = [torch.tanh(x[0]) for x in cnet_list] # x_4, x_8, x_16 of hidden state
inp_list = [torch.relu(x[1]) for x in cnet_list] # x_4, x_8, x_16 context features
# Rather than running the GRU's conv layers on the context features multiple times, we do it once at the beginning
inp_list = [list(conv(i).split(split_size=conv.out_channels//3, dim=1)) for i,conv in zip(inp_list, self.context_zqr_convs)]
coords0, coords1 = self.initialize_flow(net_list[0])
if depth_init is not None:
coords1 = coords1 + depth_init
if self.training:
low_resolution_init = [self.clamp(depth_init[:,:1] * self.regress_scale + self.max_val), depth_init[:,1:2], norm_normalize(depth_init[:,2:].clone())]
init_depth = upflow4(depth_init)
flow_predictions = [self.clamp(init_depth[:,:1] * self.regress_scale + self.max_val)]
conf_predictions = [init_depth[:,1:2]]
normal_outs = [norm_normalize(init_depth[:,2:].clone())]
else:
flow_predictions = []
conf_predictions = []
samples_pred_list = []
coord_list = []
normal_outs = []
low_resolution_init = []
for itr in range(self.iters):
# coords1 = coords1.detach()
flow = coords1 - coords0
if self.n_gru_layers == 3 and self.slow_fast_gru: # Update low-res GRU
net_list = self.update_block(net_list, inp_list, iter32=True, iter16=False, iter08=False, update=False)
if self.n_gru_layers >= 2 and self.slow_fast_gru:# Update low-res GRU and mid-res GRU
net_list = self.update_block(net_list, inp_list, iter32=self.n_gru_layers==3, iter16=True, iter08=False, update=False)
net_list, up_mask, delta_flow = self.update_block(net_list, inp_list, None, flow, iter32=self.n_gru_layers==3, iter16=self.n_gru_layers>=2)
# F(t+1) = F(t) + \Delta(t)
coords1 = coords1 + delta_flow
# We do not need to upsample or output intermediate results in test_mode
#if (not self.training) and itr < self.iters-1:
#continue
# upsample predictions
if up_mask is None:
flow_up = self.upsample(coords1-coords0, 4)
else:
flow_up = self.upsample_flow(coords1 - coords0, up_mask)
# flow_up = self.upsample(coords1-coords0, 4)
flow_predictions.append(self.clamp(flow_up[:,:1] * self.regress_scale + self.max_val))
conf_predictions.append(flow_up[:,1:2])
normal_outs.append(norm_normalize(flow_up[:,2:].clone()))
outputs=dict(
prediction=flow_predictions[-1],
predictions_list=flow_predictions,
confidence=conf_predictions[-1],
confidence_list=conf_predictions,
pred_logit=None,
# samples_pred_list=samples_pred_list,
# coord_list=coord_list,
prediction_normal=normal_outs[-1],
normal_out_list=normal_outs,
low_resolution_init=low_resolution_init,
)
return outputs
if __name__ == "__main__":
try:
from mmcv.utils import Config
except:
from mmengine import Config
cfg = Config.fromfile('/cpfs01/shared/public/users/mu.hu/monodepth/mono/configs/RAFTDecoder/vit.raft.full2t.py')
cfg.model.decode_head.in_channels = [384, 384, 384, 384]
cfg.model.decode_head.feature_channels = [96, 192, 384, 768]
cfg.model.decode_head.decoder_channels = [48, 96, 192, 384, 384]
cfg.model.decode_head.hidden_channels = [48, 48, 48, 48, 48]
cfg.model.decode_head.up_scale = 7
# cfg.model.decode_head.use_cls_token = True
# vit_feature = [[torch.rand((2, 20, 60, 384)).cuda(), torch.rand(2, 384).cuda()], \
# [torch.rand((2, 20, 60, 384)).cuda(), torch.rand(2, 384).cuda()], \
# [torch.rand((2, 20, 60, 384)).cuda(), torch.rand(2, 384).cuda()], \
# [torch.rand((2, 20, 60, 384)).cuda(), torch.rand(2, 384).cuda()]]
cfg.model.decode_head.use_cls_token = True
cfg.model.decode_head.num_register_tokens = 4
vit_feature = [[torch.rand((2, (74 * 74) + 5, 384)).cuda(),\
torch.rand((2, (74 * 74) + 5, 384)).cuda(), \
torch.rand((2, (74 * 74) + 5, 384)).cuda(), \
torch.rand((2, (74 * 74) + 5, 384)).cuda()], (2, 74, 74, 1036, 1036, 4)]
decoder = RAFTDepthNormalDPT5(cfg).cuda()
output = decoder(vit_feature)
temp = 1
|