File size: 44,620 Bytes
8a32844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81610d3
 
8a32844
 
 
 
 
 
 
81610d3
 
8a32844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
673c19d
 
8a32844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
673c19d
 
8a32844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
import torch
import torch.nn as nn
import numpy as np
import math
import torch.nn.functional as F

# LORA finetuning originally by edwardjhu
class LoRALayer():
    def __init__(
        self, 
        r: int, 
        lora_alpha: int, 
        lora_dropout: float,
        merge_weights: bool,
    ):
        self.r = r
        self.lora_alpha = lora_alpha
        # Optional dropout
        if lora_dropout > 0.:
            self.lora_dropout = nn.Dropout(p=lora_dropout)
        else:
            self.lora_dropout = lambda x: x
        # Mark the weight as unmerged
        self.merged = False
        self.merge_weights = merge_weights

class LoRALinear(nn.Linear, LoRALayer):
    # LoRA implemented in a dense layer
    def __init__(
        self, 
        in_features: int, 
        out_features: int, 
        r: int = 0, 
        lora_alpha: int = 1, 
        lora_dropout: float = 0.,
        fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
        merge_weights: bool = True,
        **kwargs
    ):
        nn.Linear.__init__(self, in_features, out_features, **kwargs)
        LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout,
                           merge_weights=merge_weights)

        self.fan_in_fan_out = fan_in_fan_out
        # Actual trainable parameters
        if r > 0:
            self.lora_A = nn.Parameter(self.weight.new_zeros((r, in_features)))
            self.lora_B = nn.Parameter(self.weight.new_zeros((out_features, r)))
            self.scaling = self.lora_alpha / self.r
            # Freezing the pre-trained weight matrix
            self.weight.requires_grad = False
        self.reset_parameters()
        if fan_in_fan_out:
            self.weight.data = self.weight.data.transpose(0, 1)

    def reset_parameters(self):
        #nn.Linear.reset_parameters(self)
        if hasattr(self, 'lora_A'):
            # initialize B the same way as the default for nn.Linear and A to zero
            # this is different than what is described in the paper but should not affect performance
            nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
            nn.init.zeros_(self.lora_B)

    # def train(self, mode: bool = True):
    #     def T(w):
    #         return w.transpose(0, 1) if self.fan_in_fan_out else w
    #     nn.Linear.train(self, mode)
    #     if mode:
    #         if self.merge_weights and self.merged:
    #             # Make sure that the weights are not merged
    #             if self.r > 0:
    #                 self.weight.data -= T(self.lora_B @ self.lora_A) * self.scaling
    #             self.merged = False
    #     else:
    #         if self.merge_weights and not self.merged:
    #             # Merge the weights and mark it
    #             if self.r > 0:
    #                 self.weight.data += T(self.lora_B @ self.lora_A) * self.scaling
    #             self.merged = True     

    def forward(self, x: torch.Tensor):
        def T(w):
            return w.transpose(0, 1) if self.fan_in_fan_out else w
        if self.r > 0 and not self.merged:
            result = F.linear(x, T(self.weight), bias=self.bias)            
            result += (self.lora_dropout(x) @ self.lora_A.transpose(0, 1) @ self.lora_B.transpose(0, 1)) * self.scaling
            return result
        else:
            return F.linear(x, T(self.weight), bias=self.bias)

class ConvLoRA(nn.Conv2d, LoRALayer):
    def __init__(self, in_channels, out_channels, kernel_size, r=0, lora_alpha=1, lora_dropout=0., merge_weights=True, **kwargs):
        #self.conv = conv_module(in_channels, out_channels, kernel_size, **kwargs)
        nn.Conv2d.__init__(self, in_channels, out_channels, kernel_size, **kwargs)
        LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, merge_weights=merge_weights)
        assert isinstance(kernel_size, int)

        # Actual trainable parameters
        if r > 0:
            self.lora_A = nn.Parameter(
                self.weight.new_zeros((r * kernel_size, in_channels * kernel_size))
            )
            self.lora_B = nn.Parameter(
              self.weight.new_zeros((out_channels//self.groups*kernel_size, r*kernel_size))
            )
            self.scaling = self.lora_alpha / self.r
            # Freezing the pre-trained weight matrix
            self.weight.requires_grad = False
        self.reset_parameters()
        self.merged = False

    def reset_parameters(self):
        #self.conv.reset_parameters()
        if hasattr(self, 'lora_A'):
            # initialize A the same way as the default for nn.Linear and B to zero
            nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
            nn.init.zeros_(self.lora_B)

    # def train(self, mode=True):
    #     super(ConvLoRA, self).train(mode)
    #     if mode:
    #         if self.merge_weights and self.merged:
    #             if self.r > 0:
    #                 # Make sure that the weights are not merged
    #                 self.conv.weight.data -= (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling
    #             self.merged = False
    #     else:
    #         if self.merge_weights and not self.merged:
    #             if self.r > 0:
    #                 # Merge the weights and mark it
    #                 self.conv.weight.data += (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling
    #             self.merged = True

    def forward(self, x):
        if self.r > 0 and not self.merged:
            # return self.conv._conv_forward(
            #     x, 
            #     self.conv.weight + (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling,
            #     self.conv.bias
            # )
            weight = self.weight + (self.lora_B @ self.lora_A).view(self.weight.shape) * self.scaling
            bias = self.bias

            return F.conv2d(x, weight, bias=bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups) 
        else:
            return F.conv2d(x, self.weight, bias=self.bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups) 

class ConvTransposeLoRA(nn.ConvTranspose2d, LoRALayer):
    def __init__(self, in_channels, out_channels, kernel_size, r=0, lora_alpha=1, lora_dropout=0., merge_weights=True, **kwargs):
        #self.conv = conv_module(in_channels, out_channels, kernel_size, **kwargs)
        nn.ConvTranspose2d.__init__(self, in_channels, out_channels, kernel_size, **kwargs)
        LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, merge_weights=merge_weights)
        assert isinstance(kernel_size, int)

        # Actual trainable parameters
        if r > 0:
            self.lora_A = nn.Parameter(
                self.weight.new_zeros((r * kernel_size, in_channels * kernel_size))
            )
            self.lora_B = nn.Parameter(
              self.weight.new_zeros((out_channels//self.groups*kernel_size, r*kernel_size))
            )
            self.scaling = self.lora_alpha / self.r
            # Freezing the pre-trained weight matrix
            self.weight.requires_grad = False
        self.reset_parameters()
        self.merged = False

    def reset_parameters(self):
        #self.conv.reset_parameters()
        if hasattr(self, 'lora_A'):
            # initialize A the same way as the default for nn.Linear and B to zero
            nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
            nn.init.zeros_(self.lora_B)

    # def train(self, mode=True):
    #     super(ConvTransposeLoRA, self).train(mode)
    #     if mode:
    #         if self.merge_weights and self.merged:
    #             if self.r > 0:
    #                 # Make sure that the weights are not merged
    #                 self.conv.weight.data -= (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling
    #             self.merged = False
    #     else:
    #         if self.merge_weights and not self.merged:
    #             if self.r > 0:
    #                 # Merge the weights and mark it
    #                 self.conv.weight.data += (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling
    #             self.merged = True

    def forward(self, x):
        if self.r > 0 and not self.merged:
            weight = self.weight + (self.lora_B @ self.lora_A).view(self.weight.shape) * self.scaling
            bias = self.bias
            return F.conv_transpose2d(x, weight,
                bias=bias, stride=self.stride, padding=self.padding, output_padding=self.output_padding, 
                groups=self.groups, dilation=self.dilation)
        else:
            return F.conv_transpose2d(x, self.weight,
                bias=self.bias, stride=self.stride, padding=self.padding, output_padding=self.output_padding, 
                groups=self.groups, dilation=self.dilation)
        #return self.conv(x)

class Conv2dLoRA(ConvLoRA):
    def __init__(self, *args, **kwargs):
        super(Conv2dLoRA, self).__init__(*args, **kwargs)

class ConvTranspose2dLoRA(ConvTransposeLoRA):
    def __init__(self, *args, **kwargs):
        super(ConvTranspose2dLoRA, self).__init__(*args, **kwargs)


def compute_depth_expectation(prob, depth_values):
    depth_values = depth_values.view(*depth_values.shape, 1, 1)
    depth = torch.sum(prob * depth_values, 1)
    return depth

def interpolate_float32(x, size=None, scale_factor=None, mode='nearest', align_corners=None):
    #with torch.autocast(device_type='cuda', dtype=torch.bfloat16, enabled=False):
    return F.interpolate(x.float(), size=size, scale_factor=scale_factor, mode=mode, align_corners=align_corners)

# def upflow8(flow, mode='bilinear'):
#     new_size = (8 * flow.shape[2], 8 * flow.shape[3])
#     return  8 * F.interpolate(flow, size=new_size, mode=mode, align_corners=True)

def upflow4(flow, mode='bilinear'):
    new_size = (4 * flow.shape[2], 4 * flow.shape[3])
    #with torch.autocast(device_type='cuda', dtype=torch.bfloat16, enabled=False):
    return  F.interpolate(flow, size=new_size, mode=mode, align_corners=True)

def coords_grid(batch, ht, wd):
    # coords = torch.meshgrid(torch.arange(ht), torch.arange(wd))
    coords = (torch.zeros((ht, wd)), torch.zeros((ht, wd)), torch.zeros((ht, wd)), torch.zeros((ht, wd)), torch.zeros((ht, wd)), torch.zeros((ht, wd)))
    coords = torch.stack(coords[::-1], dim=0).float()
    return coords[None].repeat(batch, 1, 1, 1)

def norm_normalize(norm_out):
    min_kappa = 0.01
    norm_x, norm_y, norm_z, kappa = torch.split(norm_out, 1, dim=1)
    norm = torch.sqrt(norm_x ** 2.0 + norm_y ** 2.0 + norm_z ** 2.0) + 1e-10
    kappa = F.elu(kappa) + 1.0 + min_kappa
    final_out = torch.cat([norm_x / norm, norm_y / norm, norm_z / norm, kappa], dim=1)
    return final_out

# uncertainty-guided sampling (only used during training)
@torch.no_grad()
def sample_points(init_normal, gt_norm_mask, sampling_ratio, beta):
    device = init_normal.device
    B, _, H, W = init_normal.shape
    N = int(sampling_ratio * H * W)
    beta = beta

    # uncertainty map
    uncertainty_map = -1 * init_normal[:, -1, :, :]  # B, H, W

    # gt_invalid_mask (B, H, W)
    if gt_norm_mask is not None:
        gt_invalid_mask = F.interpolate(gt_norm_mask.float(), size=[H, W], mode='nearest')
        gt_invalid_mask = gt_invalid_mask[:, 0, :, :] < 0.5
        uncertainty_map[gt_invalid_mask] = -1e4

    # (B, H*W)
    _, idx = uncertainty_map.view(B, -1).sort(1, descending=True)

    # importance sampling
    if int(beta * N) > 0:
        importance = idx[:, :int(beta * N)]    # B, beta*N

        # remaining
        remaining = idx[:, int(beta * N):]     # B, H*W - beta*N

        # coverage
        num_coverage = N - int(beta * N)

        if num_coverage <= 0:
            samples = importance
        else:
            coverage_list = []
            for i in range(B):
                idx_c = torch.randperm(remaining.size()[1])    # shuffles "H*W - beta*N"
                coverage_list.append(remaining[i, :][idx_c[:num_coverage]].view(1, -1))     # 1, N-beta*N
            coverage = torch.cat(coverage_list, dim=0)                                      # B, N-beta*N
            samples = torch.cat((importance, coverage), dim=1)                              # B, N

    else:
        # remaining
        remaining = idx[:, :]  # B, H*W

        # coverage
        num_coverage = N

        coverage_list = []
        for i in range(B):
            idx_c = torch.randperm(remaining.size()[1])  # shuffles "H*W - beta*N"
            coverage_list.append(remaining[i, :][idx_c[:num_coverage]].view(1, -1))  # 1, N-beta*N
        coverage = torch.cat(coverage_list, dim=0)  # B, N-beta*N
        samples = coverage

    # point coordinates
    rows_int = samples // W         # 0 for first row, H-1 for last row
    rows_float = rows_int / float(H-1)         # 0 to 1.0
    rows_float = (rows_float * 2.0) - 1.0       # -1.0 to 1.0

    cols_int = samples % W          # 0 for first column, W-1 for last column
    cols_float = cols_int / float(W-1)         # 0 to 1.0
    cols_float = (cols_float * 2.0) - 1.0       # -1.0 to 1.0

    point_coords = torch.zeros(B, 1, N, 2)
    point_coords[:, 0, :, 0] = cols_float             # x coord
    point_coords[:, 0, :, 1] = rows_float             # y coord
    point_coords = point_coords.to(device)
    return point_coords, rows_int, cols_int
    
class FlowHead(nn.Module):
    def __init__(self, input_dim=128, hidden_dim=256, output_dim_depth=2, output_dim_norm=4, tuning_mode=None):
        super(FlowHead, self).__init__()
        self.conv1d = Conv2dLoRA(input_dim, hidden_dim // 2, 3, padding=1, r = 8 if tuning_mode == 'lora' else 0)
        self.conv2d = Conv2dLoRA(hidden_dim // 2, output_dim_depth, 3, padding=1, r = 8 if tuning_mode == 'lora' else 0)

        self.conv1n = Conv2dLoRA(input_dim, hidden_dim // 2, 3, padding=1, r = 8 if tuning_mode == 'lora' else 0)
        self.conv2n = Conv2dLoRA(hidden_dim // 2, output_dim_norm, 3, padding=1, r = 8 if tuning_mode == 'lora' else 0)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        depth = self.conv2d(self.relu(self.conv1d(x)))
        normal = self.conv2n(self.relu(self.conv1n(x)))
        return torch.cat((depth, normal), dim=1)
        

class ConvGRU(nn.Module):
    def __init__(self, hidden_dim, input_dim, kernel_size=3, tuning_mode=None):
        super(ConvGRU, self).__init__()
        self.convz = Conv2dLoRA(hidden_dim+input_dim, hidden_dim, kernel_size, padding=kernel_size//2, r = 8 if tuning_mode == 'lora' else 0)
        self.convr = Conv2dLoRA(hidden_dim+input_dim, hidden_dim, kernel_size, padding=kernel_size//2, r = 8 if tuning_mode == 'lora' else 0)
        self.convq = Conv2dLoRA(hidden_dim+input_dim, hidden_dim, kernel_size, padding=kernel_size//2, r = 8 if tuning_mode == 'lora' else 0)

    def forward(self, h, cz, cr, cq, *x_list):
        x = torch.cat(x_list, dim=1)
        hx = torch.cat([h, x], dim=1)

        z = torch.sigmoid((self.convz(hx) + cz))
        r = torch.sigmoid((self.convr(hx) + cr))
        q = torch.tanh((self.convq(torch.cat([r*h, x], dim=1)) + cq))

        # z = torch.sigmoid((self.convz(hx) + cz).float())
        # r = torch.sigmoid((self.convr(hx) + cr).float())
        # q = torch.tanh((self.convq(torch.cat([r*h, x], dim=1)) + cq).float())

        h = (1-z) * h + z * q
        return h

def pool2x(x):
    return F.avg_pool2d(x, 3, stride=2, padding=1)

def pool4x(x):
    return F.avg_pool2d(x, 5, stride=4, padding=1)

def interp(x, dest):
    interp_args = {'mode': 'bilinear', 'align_corners': True}
    return interpolate_float32(x, dest.shape[2:], **interp_args)

class BasicMultiUpdateBlock(nn.Module):
    def __init__(self, args, hidden_dims=[], out_dims=2, tuning_mode=None):
        super().__init__()
        self.args = args
        self.n_gru_layers = args.model.decode_head.n_gru_layers # 3
        self.n_downsample = args.model.decode_head.n_downsample # 3, resolution of the disparity field (1/2^K)
        
        # self.encoder = BasicMotionEncoder(args)
        # encoder_output_dim = 128 # if there is corr volume
        encoder_output_dim = 6 # no corr volume

        self.gru08 = ConvGRU(hidden_dims[2], encoder_output_dim + hidden_dims[1] * (self.n_gru_layers > 1), tuning_mode=tuning_mode)
        self.gru16 = ConvGRU(hidden_dims[1], hidden_dims[0] * (self.n_gru_layers == 3) + hidden_dims[2], tuning_mode=tuning_mode)
        self.gru32 = ConvGRU(hidden_dims[0], hidden_dims[1], tuning_mode=tuning_mode)
        self.flow_head = FlowHead(hidden_dims[2], hidden_dim=2*hidden_dims[2], tuning_mode=tuning_mode)
        factor = 2**self.n_downsample

        self.mask = nn.Sequential(
            Conv2dLoRA(hidden_dims[2], hidden_dims[2], 3, padding=1, r = 8 if tuning_mode == 'lora' else 0),
            nn.ReLU(inplace=True),
            Conv2dLoRA(hidden_dims[2], (factor**2)*9, 1, padding=0, r = 8 if tuning_mode == 'lora' else 0))

    def forward(self, net, inp, corr=None, flow=None, iter08=True, iter16=True, iter32=True, update=True):

        if iter32:
            net[2] = self.gru32(net[2], *(inp[2]), pool2x(net[1]))
        if iter16:
            if self.n_gru_layers > 2:
                net[1] = self.gru16(net[1], *(inp[1]), interp(pool2x(net[0]), net[1]), interp(net[2], net[1]))
            else:
                net[1] = self.gru16(net[1], *(inp[1]), interp(pool2x(net[0]), net[1]))
        if iter08:
            if corr is not None:
                motion_features = self.encoder(flow, corr)
            else:
                motion_features = flow
            if self.n_gru_layers > 1:
                net[0] = self.gru08(net[0], *(inp[0]), motion_features, interp(net[1], net[0]))
            else:
                net[0] = self.gru08(net[0], *(inp[0]), motion_features)

        if not update:
            return net

        delta_flow = self.flow_head(net[0])

        # scale mask to balence gradients
        mask = .25 * self.mask(net[0])
        return net, mask, delta_flow

class LayerNorm2d(nn.LayerNorm):
    def __init__(self, dim):
        super(LayerNorm2d, self).__init__(dim)

    def forward(self, x):
        x = x.permute(0, 2, 3, 1).contiguous()
        x = super(LayerNorm2d, self).forward(x)
        x = x.permute(0, 3, 1, 2).contiguous()
        return x

class ResidualBlock(nn.Module):
    def __init__(self, in_planes, planes, norm_fn='group', stride=1, tuning_mode=None):
        super(ResidualBlock, self).__init__()
  
        self.conv1 = Conv2dLoRA(in_planes, planes, kernel_size=3, padding=1, stride=stride, r = 8 if tuning_mode == 'lora' else 0)
        self.conv2 = Conv2dLoRA(planes, planes, kernel_size=3, padding=1, r = 8 if tuning_mode == 'lora' else 0)
        self.relu = nn.ReLU(inplace=True)

        num_groups = planes // 8

        if norm_fn == 'group':
            self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
            self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
            if not (stride == 1 and in_planes == planes):
                self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
        
        elif norm_fn == 'batch':
            self.norm1 = nn.BatchNorm2d(planes)
            self.norm2 = nn.BatchNorm2d(planes)
            if not (stride == 1 and in_planes == planes):
                self.norm3 = nn.BatchNorm2d(planes)
        
        elif norm_fn == 'instance':
            self.norm1 = nn.InstanceNorm2d(planes)
            self.norm2 = nn.InstanceNorm2d(planes)
            if not (stride == 1 and in_planes == planes):
                self.norm3 = nn.InstanceNorm2d(planes)

        elif norm_fn == 'layer':
            self.norm1 = LayerNorm2d(planes)
            self.norm2 = LayerNorm2d(planes)
            if not (stride == 1 and in_planes == planes):
                self.norm3 = LayerNorm2d(planes)

        elif norm_fn == 'none':
            self.norm1 = nn.Sequential()
            self.norm2 = nn.Sequential()
            if not (stride == 1 and in_planes == planes):
                self.norm3 = nn.Sequential()

        if stride == 1 and in_planes == planes:
            self.downsample = None
        
        else:    
            self.downsample = nn.Sequential(
                Conv2dLoRA(in_planes, planes, kernel_size=1, stride=stride,  r = 8 if tuning_mode == 'lora' else 0), self.norm3)
            
    def forward(self, x):
        y = x
        y = self.conv1(y)
        y = self.norm1(y)
        y = self.relu(y)
        y = self.conv2(y)
        y = self.norm2(y)
        y = self.relu(y)

        if self.downsample is not None:
            x = self.downsample(x)

        return self.relu(x+y)


class ContextFeatureEncoder(nn.Module):
    '''
    Encoder features are used to:
        1. initialize the hidden state of the update operator 
        2. and also injected into the GRU during each iteration of the update operator
    '''
    def __init__(self, in_dim, output_dim, tuning_mode=None):
        '''
        in_dim     = [x4, x8, x16, x32]
        output_dim = [hindden_dims,   context_dims]
                    [[x4,x8,x16,x32],[x4,x8,x16,x32]]
        '''
        super().__init__()

        output_list = []
        for dim in output_dim:
            conv_out = nn.Sequential(
                ResidualBlock(in_dim[0], dim[0], 'layer', stride=1, tuning_mode=tuning_mode),
                Conv2dLoRA(dim[0], dim[0], 3, padding=1,  r = 8 if tuning_mode == 'lora' else 0))
            output_list.append(conv_out)

        self.outputs04 = nn.ModuleList(output_list)

        output_list = []
        for dim in output_dim:
            conv_out = nn.Sequential(
                ResidualBlock(in_dim[1], dim[1], 'layer', stride=1, tuning_mode=tuning_mode),
                Conv2dLoRA(dim[1], dim[1], 3, padding=1, r = 8 if tuning_mode == 'lora' else 0))
            output_list.append(conv_out)

        self.outputs08 = nn.ModuleList(output_list)

        output_list = []
        for dim in output_dim:
            conv_out = nn.Sequential(
                ResidualBlock(in_dim[2], dim[2], 'layer', stride=1, tuning_mode=tuning_mode),
                Conv2dLoRA(dim[2], dim[2], 3, padding=1,  r = 8 if tuning_mode == 'lora' else 0))
            output_list.append(conv_out)

        self.outputs16 = nn.ModuleList(output_list)

        # output_list = []
        # for dim in output_dim:
        #     conv_out = Conv2dLoRA(in_dim[3], dim[3], 3, padding=1)
        #     output_list.append(conv_out)

        # self.outputs32 = nn.ModuleList(output_list)

    def forward(self, encoder_features):
        x_4, x_8, x_16, x_32 = encoder_features

        outputs04 = [f(x_4) for f in self.outputs04]
        outputs08 = [f(x_8) for f in self.outputs08]
        outputs16 = [f(x_16)for f in self.outputs16]
        # outputs32 = [f(x_32) for f in self.outputs32]

        return (outputs04, outputs08, outputs16)

class ConvBlock(nn.Module):
    # reimplementation of DPT
    def __init__(self, channels, tuning_mode=None):
        super(ConvBlock, self).__init__()

        self.act = nn.ReLU(inplace=True)
        self.conv1 = Conv2dLoRA(
            channels,
            channels,
            kernel_size=3,
            stride=1,
            padding=1,
            r = 8 if tuning_mode == 'lora' else 0
        )
        self.conv2 = Conv2dLoRA(
            channels,
            channels,
            kernel_size=3,
            stride=1,
            padding=1,
            r = 8 if tuning_mode == 'lora' else 0
        )

    def forward(self, x):
        out = self.act(x)
        out = self.conv1(out)
        out = self.act(out)
        out = self.conv2(out)
        return x + out

class FuseBlock(nn.Module):
    # reimplementation of DPT
    def __init__(self, in_channels, out_channels, fuse=True, upsample=True, scale_factor=2, tuning_mode=None):
        super(FuseBlock, self).__init__()

        self.fuse = fuse
        self.scale_factor = scale_factor
        self.way_trunk = ConvBlock(in_channels, tuning_mode=tuning_mode)
        if self.fuse:
            self.way_branch = ConvBlock(in_channels, tuning_mode=tuning_mode)
        
        self.out_conv = Conv2dLoRA(
            in_channels,
            out_channels,
            kernel_size=1,
            stride=1,
            padding=0,
            r = 8 if tuning_mode == 'lora' else 0
        )
        self.upsample = upsample

    def forward(self, x1, x2=None):
        if x2 is not None:
            x2 = self.way_branch(x2)
            x1 = x1 + x2

        out = self.way_trunk(x1)

        if self.upsample:
            out = interpolate_float32(
                out, scale_factor=self.scale_factor, mode="bilinear", align_corners=True
            )
        out = self.out_conv(out)
        return out

class Readout(nn.Module):  
    # From DPT
    def __init__(self, in_features, use_cls_token=True, num_register_tokens=0, tuning_mode=None):
        super(Readout, self).__init__()
        self.use_cls_token = use_cls_token
        if self.use_cls_token == True:
            self.project_patch = LoRALinear(in_features, in_features, r = 8 if tuning_mode == 'lora' else 0)
            self.project_learn = LoRALinear((1 + num_register_tokens) * in_features, in_features, bias=False, r = 8 if tuning_mode == 'lora' else 0) 
            self.act = nn.GELU()
        else:
            self.project = nn.Identity()

    def forward(self, x):

        if self.use_cls_token == True:
            x_patch = self.project_patch(x[0])
            x_learn = self.project_learn(x[1])
            x_learn = x_learn.expand_as(x_patch).contiguous()
            features = x_patch + x_learn
            return self.act(features)
        else:
            return self.project(x)

class Token2Feature(nn.Module):
    # From DPT
    def __init__(self, vit_channel, feature_channel, scale_factor, use_cls_token=True, num_register_tokens=0, tuning_mode=None):
        super(Token2Feature, self).__init__()
        self.scale_factor = scale_factor
        self.readoper = Readout(in_features=vit_channel, use_cls_token=use_cls_token, num_register_tokens=num_register_tokens,  tuning_mode=tuning_mode)
        if scale_factor > 1 and isinstance(scale_factor, int):
            self.sample = ConvTranspose2dLoRA(r = 8 if tuning_mode == 'lora' else 0,
                in_channels=vit_channel,
                out_channels=feature_channel,
                kernel_size=scale_factor,
                stride=scale_factor,
                padding=0,
            )
        
        elif scale_factor > 1:
            self.sample = nn.Sequential(
                # Upsample2(upscale=scale_factor),
                # nn.Upsample(scale_factor=scale_factor),
                Conv2dLoRA(r = 8 if tuning_mode == 'lora' else 0,
                    in_channels=vit_channel,
                    out_channels=feature_channel,
                    kernel_size=1,
                    stride=1,
                    padding=0,
                ),
            )
            

        elif scale_factor < 1:
            scale_factor = int(1.0 / scale_factor)
            self.sample = Conv2dLoRA(r = 8 if tuning_mode == 'lora' else 0,
                in_channels=vit_channel,
                out_channels=feature_channel,
                kernel_size=scale_factor+1,
                stride=scale_factor,
                padding=1,
            )

        else:
            self.sample = nn.Identity()

    def forward(self, x):
        x = self.readoper(x)
        #if use_cls_token == True:
        x = x.permute(0, 3, 1, 2).contiguous()
        if isinstance(self.scale_factor, float):
            x = interpolate_float32(x.float(), scale_factor=self.scale_factor, mode='nearest')
        x = self.sample(x)
        return x

class EncoderFeature(nn.Module):
    def __init__(self, vit_channel, num_ch_dec=[256, 512, 1024, 1024], use_cls_token=True, num_register_tokens=0, tuning_mode=None):
        super(EncoderFeature, self).__init__()
        self.vit_channel = vit_channel
        self.num_ch_dec = num_ch_dec

        self.read_3 = Token2Feature(self.vit_channel, self.num_ch_dec[3], scale_factor=1, use_cls_token=use_cls_token, num_register_tokens=num_register_tokens, tuning_mode=tuning_mode)
        self.read_2 = Token2Feature(self.vit_channel, self.num_ch_dec[2], scale_factor=1, use_cls_token=use_cls_token, num_register_tokens=num_register_tokens, tuning_mode=tuning_mode)
        self.read_1 = Token2Feature(self.vit_channel, self.num_ch_dec[1], scale_factor=2, use_cls_token=use_cls_token, num_register_tokens=num_register_tokens, tuning_mode=tuning_mode)
        self.read_0 = Token2Feature(self.vit_channel, self.num_ch_dec[0], scale_factor=7/2, use_cls_token=use_cls_token, num_register_tokens=num_register_tokens, tuning_mode=tuning_mode)

    def forward(self, ref_feature):
        x = self.read_3(ref_feature[3])  # 1/14
        x2 = self.read_2(ref_feature[2]) # 1/14
        x1 = self.read_1(ref_feature[1]) # 1/7
        x0 = self.read_0(ref_feature[0]) # 1/4

        return x, x2, x1, x0

class DecoderFeature(nn.Module):
    def __init__(self, vit_channel, num_ch_dec=[128, 256, 512, 1024, 1024], use_cls_token=True, tuning_mode=None):
        super(DecoderFeature, self).__init__()
        self.vit_channel = vit_channel
        self.num_ch_dec = num_ch_dec

        self.upconv_3 = FuseBlock(
            self.num_ch_dec[4], 
            self.num_ch_dec[3], 
        fuse=False, upsample=False, tuning_mode=tuning_mode)
        
        self.upconv_2 = FuseBlock(
            self.num_ch_dec[3], 
            self.num_ch_dec[2],
        tuning_mode=tuning_mode)
        
        self.upconv_1 = FuseBlock(
            self.num_ch_dec[2], 
            self.num_ch_dec[1] + 2,
            scale_factor=7/4,
        tuning_mode=tuning_mode)

        # self.upconv_0 = FuseBlock(
        #     self.num_ch_dec[1], 
        #     self.num_ch_dec[0] + 1,
        # )
    
    def forward(self, ref_feature):
        x, x2, x1, x0 = ref_feature # 1/14 1/14 1/7 1/4
     
        x = self.upconv_3(x)     # 1/14
        x = self.upconv_2(x, x2) # 1/7
        x = self.upconv_1(x, x1) # 1/4
        # x = self.upconv_0(x, x0) # 4/7
        return x

class RAFTDepthNormalDPT5(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.in_channels = cfg.model.decode_head.in_channels # [1024, 1024, 1024, 1024]
        self.feature_channels = cfg.model.decode_head.feature_channels # [256, 512, 1024, 1024] [2/7, 1/7, 1/14, 1/14]
        self.decoder_channels = cfg.model.decode_head.decoder_channels # [128, 256, 512, 1024, 1024] [-, 1/4, 1/7, 1/14, 1/14]
        self.use_cls_token = cfg.model.decode_head.use_cls_token
        self.up_scale = cfg.model.decode_head.up_scale
        self.num_register_tokens = cfg.model.decode_head.num_register_tokens
        self.min_val = cfg.data_basic.depth_normalize[0]
        self.max_val = cfg.data_basic.depth_normalize[1]
        self.regress_scale = 100.0\
        
        try:
            tuning_mode = cfg.model.decode_head.tuning_mode
        except:
            tuning_mode = None
        self.tuning_mode = tuning_mode

        self.hidden_dims = self.context_dims = cfg.model.decode_head.hidden_channels # [128, 128, 128, 128]
        self.n_gru_layers = cfg.model.decode_head.n_gru_layers # 3
        self.n_downsample = cfg.model.decode_head.n_downsample # 3, resolution of the disparity field (1/2^K)
        self.iters = cfg.model.decode_head.iters # 22
        self.slow_fast_gru = cfg.model.decode_head.slow_fast_gru # True

        self.num_depth_regressor_anchor = 256 # 512
        self.used_res_channel = self.decoder_channels[1] # now, use 2/7 res
        self.token2feature = EncoderFeature(self.in_channels[0], self.feature_channels, self.use_cls_token, self.num_register_tokens, tuning_mode=tuning_mode)
        self.decoder_mono = DecoderFeature(self.in_channels, self.decoder_channels, tuning_mode=tuning_mode)
        self.depth_regressor = nn.Sequential(
            Conv2dLoRA(self.used_res_channel,
                      self.num_depth_regressor_anchor,
                      kernel_size=3,
                      padding=1, r = 8 if tuning_mode == 'lora' else 0),
            # nn.BatchNorm2d(self.num_depth_regressor_anchor),
            nn.ReLU(inplace=True),
            Conv2dLoRA(self.num_depth_regressor_anchor,
                      self.num_depth_regressor_anchor,
                      kernel_size=1, r = 8 if tuning_mode == 'lora' else 0),
        )
        self.normal_predictor = nn.Sequential(
            Conv2dLoRA(self.used_res_channel,
                      128,
                      kernel_size=3,
                      padding=1, r = 8 if tuning_mode == 'lora' else 0,),
            # nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            Conv2dLoRA(128, 128, kernel_size=1, r = 8 if tuning_mode == 'lora' else 0), nn.ReLU(inplace=True),
            Conv2dLoRA(128, 128, kernel_size=1, r = 8 if tuning_mode == 'lora' else 0), nn.ReLU(inplace=True),
            Conv2dLoRA(128, 3, kernel_size=1, r = 8 if tuning_mode == 'lora' else 0),
        )

        self.context_feature_encoder = ContextFeatureEncoder(self.feature_channels, [self.hidden_dims, self.context_dims], tuning_mode=tuning_mode)
        self.context_zqr_convs = nn.ModuleList([Conv2dLoRA(self.context_dims[i], self.hidden_dims[i]*3, 3, padding=3//2, r = 8 if tuning_mode == 'lora' else 0) for i in range(self.n_gru_layers)])
        self.update_block = BasicMultiUpdateBlock(cfg, hidden_dims=self.hidden_dims, out_dims=6, tuning_mode=tuning_mode)

        self.relu = nn.ReLU(inplace=True)
    
    def get_bins(self, bins_num):
        depth_bins_vec = torch.linspace(math.log(self.min_val), math.log(self.max_val), bins_num, device="cuda")
        #depth_bins_vec = torch.linspace(math.log(self.min_val), math.log(self.max_val), bins_num, device="cpu")
        depth_bins_vec = torch.exp(depth_bins_vec)
        return depth_bins_vec
    
    def register_depth_expectation_anchor(self, bins_num, B):
        depth_bins_vec = self.get_bins(bins_num)
        depth_bins_vec = depth_bins_vec.unsqueeze(0).repeat(B, 1)        
        self.register_buffer('depth_expectation_anchor', depth_bins_vec, persistent=False)
    
    def clamp(self, x):
        y = self.relu(x - self.min_val) + self.min_val
        y = self.max_val - self.relu(self.max_val - y)
        return y
    
    def regress_depth(self, feature_map_d):
        prob_feature = self.depth_regressor(feature_map_d)
        prob = prob_feature.softmax(dim=1)
        #prob = prob_feature.float().softmax(dim=1)

        ## Error logging
        if torch.isnan(prob).any():
            print('prob_feat_nan!!!')
        if torch.isinf(prob).any():
            print('prob_feat_inf!!!')

        # h = prob[0,:,0,0].cpu().numpy().reshape(-1)
        # import matplotlib.pyplot as plt 
        # plt.bar(range(len(h)), h)
        B = prob.shape[0]
        if "depth_expectation_anchor" not in self._buffers:
            self.register_depth_expectation_anchor(self.num_depth_regressor_anchor, B)
        d = compute_depth_expectation(
            prob,
            self.depth_expectation_anchor[:B, ...]).unsqueeze(1)

        ## Error logging
        if torch.isnan(d ).any():
            print('d_nan!!!')
        if torch.isinf(d ).any():
            print('d_inf!!!')

        return (self.clamp(d) - self.max_val)/ self.regress_scale, prob_feature

    def pred_normal(self, feature_map, confidence):
        normal_out = self.normal_predictor(feature_map)

        ## Error logging
        if torch.isnan(normal_out).any():
            print('norm_nan!!!')
        if torch.isinf(normal_out).any():
            print('norm_feat_inf!!!')

        return norm_normalize(torch.cat([normal_out, confidence], dim=1))
        #return norm_normalize(torch.cat([normal_out, confidence], dim=1).float())
    
    #def create_mesh_grid(self, height, width, batch, device="cpu", set_buffer=True):
    def create_mesh_grid(self, height, width, batch, device="cuda", set_buffer=True):
        y, x = torch.meshgrid([torch.arange(0, height, dtype=torch.float32, device=device),
                               torch.arange(0, width, dtype=torch.float32, device=device)], indexing='ij')
        meshgrid = torch.stack((x, y))
        meshgrid = meshgrid.unsqueeze(0).repeat(batch, 1, 1, 1)
        #self.register_buffer('meshgrid', meshgrid, persistent=False)
        return meshgrid

    def upsample_flow(self, flow, mask):
        """ Upsample flow field [H/8, W/8, 2] -> [H, W, 2] using convex combination """
        N, D, H, W = flow.shape
        factor = 2 ** self.n_downsample
        mask = mask.view(N, 1, 9, factor, factor, H, W)
        mask = torch.softmax(mask, dim=2)
        #mask = torch.softmax(mask.float(), dim=2)

        #up_flow = F.unfold(factor * flow, [3,3], padding=1)
        up_flow = F.unfold(flow, [3,3], padding=1)
        up_flow = up_flow.view(N, D, 9, 1, 1, H, W)

        up_flow = torch.sum(mask * up_flow, dim=2)
        up_flow = up_flow.permute(0, 1, 4, 2, 5, 3)
        return up_flow.reshape(N, D, factor*H, factor*W)

    def initialize_flow(self, img):
        """ Flow is represented as difference between two coordinate grids flow = coords1 - coords0"""
        N, _, H, W = img.shape

        coords0 = coords_grid(N, H, W).to(img.device)
        coords1 = coords_grid(N, H, W).to(img.device)

        return coords0, coords1
    
    def upsample(self, x, scale_factor=2):
        """Upsample input tensor by a factor of 2
        """
        return interpolate_float32(x, scale_factor=scale_factor*self.up_scale/8, mode="nearest")

    def forward(self, vit_features, **kwargs):
        ## read vit token to multi-scale features
        B, H, W, _, _, num_register_tokens = vit_features[1]
        vit_features = vit_features[0]

        ## Error logging
        if torch.isnan(vit_features[0]).any():
            print('vit_feature_nan!!!')
        if torch.isinf(vit_features[0]).any():
            print('vit_feature_inf!!!')

        if self.use_cls_token == True:
            vit_features = [[ft[:, 1+num_register_tokens:, :].view(B, H, W, self.in_channels[0]), \
                ft[:, 0:1+num_register_tokens, :].view(B, 1, 1, self.in_channels[0] * (1+num_register_tokens))] for ft in vit_features]
        else:
            vit_features = [ft.view(B, H, W, self.in_channels[0]) for ft in vit_features]
        encoder_features = self.token2feature(vit_features) # 1/14, 1/14, 1/7, 1/4

        ## Error logging
        for en_ft in encoder_features:
            if torch.isnan(en_ft).any():
                print('decoder_feature_nan!!!')
                print(en_ft.shape)
            if torch.isinf(en_ft).any():
                print('decoder_feature_inf!!!')
                print(en_ft.shape)

        ## decode features to init-depth (and confidence)
        ref_feat= self.decoder_mono(encoder_features) # now, 1/4 for depth

        ## Error logging
        if torch.isnan(ref_feat).any():
            print('ref_feat_nan!!!')
        if torch.isinf(ref_feat).any():
            print('ref_feat_inf!!!')

        feature_map = ref_feat[:, :-2, :, :] # feature map share of depth and normal prediction
        depth_confidence_map = ref_feat[:, -2:-1, :, :]
        normal_confidence_map = ref_feat[:, -1:, :, :]
        depth_pred, binmap = self.regress_depth(feature_map) # regress bin for depth
        normal_pred = self.pred_normal(feature_map, normal_confidence_map) # mlp for normal

        depth_init = torch.cat((depth_pred, depth_confidence_map, normal_pred), dim=1) # (N, 1+1+4, H, W)

        ## encoder features to context-feature for init-hidden-state and contex-features
        cnet_list = self.context_feature_encoder(encoder_features[::-1])
        net_list = [torch.tanh(x[0]) for x in cnet_list] # x_4, x_8, x_16 of hidden state
        inp_list = [torch.relu(x[1]) for x in cnet_list] # x_4, x_8, x_16 context features

        # Rather than running the GRU's conv layers on the context features multiple times, we do it once at the beginning 
        inp_list = [list(conv(i).split(split_size=conv.out_channels//3, dim=1)) for i,conv in zip(inp_list, self.context_zqr_convs)]

        coords0, coords1 = self.initialize_flow(net_list[0])
        if depth_init is not None:
            coords1 = coords1 + depth_init

        if self.training:
            low_resolution_init = [self.clamp(depth_init[:,:1] * self.regress_scale + self.max_val), depth_init[:,1:2], norm_normalize(depth_init[:,2:].clone())]
            init_depth = upflow4(depth_init)
            flow_predictions = [self.clamp(init_depth[:,:1] * self.regress_scale + self.max_val)]
            conf_predictions = [init_depth[:,1:2]]
            normal_outs = [norm_normalize(init_depth[:,2:].clone())]

        else:
            flow_predictions = []
            conf_predictions = []
            samples_pred_list = []
            coord_list = []
            normal_outs = []
            low_resolution_init = []

        for itr in range(self.iters):
            # coords1 = coords1.detach()
            flow = coords1 - coords0
            if self.n_gru_layers == 3 and self.slow_fast_gru: # Update low-res GRU
                net_list = self.update_block(net_list, inp_list, iter32=True, iter16=False, iter08=False, update=False)
            if self.n_gru_layers >= 2 and self.slow_fast_gru:# Update low-res GRU and mid-res GRU
                net_list = self.update_block(net_list, inp_list, iter32=self.n_gru_layers==3, iter16=True, iter08=False, update=False)
            net_list, up_mask, delta_flow = self.update_block(net_list, inp_list, None, flow, iter32=self.n_gru_layers==3, iter16=self.n_gru_layers>=2)

            # F(t+1) = F(t) + \Delta(t)
            coords1 = coords1 + delta_flow

            # We do not need to upsample or output intermediate results in test_mode
            #if (not self.training) and itr < self.iters-1:
                #continue

            # upsample predictions
            if up_mask is None:
                flow_up = self.upsample(coords1-coords0, 4)
            else:
                flow_up = self.upsample_flow(coords1 - coords0, up_mask)
                # flow_up = self.upsample(coords1-coords0, 4)

            flow_predictions.append(self.clamp(flow_up[:,:1] * self.regress_scale + self.max_val))
            conf_predictions.append(flow_up[:,1:2])
            normal_outs.append(norm_normalize(flow_up[:,2:].clone()))

        outputs=dict(
            prediction=flow_predictions[-1],
            predictions_list=flow_predictions,
            confidence=conf_predictions[-1],
            confidence_list=conf_predictions,
            pred_logit=None,
            # samples_pred_list=samples_pred_list,
            # coord_list=coord_list,
            prediction_normal=normal_outs[-1],
            normal_out_list=normal_outs,
            low_resolution_init=low_resolution_init,
        )

        return outputs


if __name__ == "__main__":
    try:
        from mmcv.utils import Config
    except:
        from mmengine import Config
    cfg = Config.fromfile('/cpfs01/shared/public/users/mu.hu/monodepth/mono/configs/RAFTDecoder/vit.raft.full2t.py')
    cfg.model.decode_head.in_channels = [384, 384, 384, 384]
    cfg.model.decode_head.feature_channels = [96, 192, 384, 768]
    cfg.model.decode_head.decoder_channels = [48, 96, 192, 384, 384]
    cfg.model.decode_head.hidden_channels = [48, 48, 48, 48, 48]
    cfg.model.decode_head.up_scale = 7
    
    # cfg.model.decode_head.use_cls_token = True
    # vit_feature = [[torch.rand((2, 20, 60, 384)).cuda(), torch.rand(2, 384).cuda()], \
    #         [torch.rand((2, 20, 60, 384)).cuda(), torch.rand(2, 384).cuda()], \
    #         [torch.rand((2, 20, 60, 384)).cuda(), torch.rand(2, 384).cuda()], \
    #         [torch.rand((2, 20, 60, 384)).cuda(), torch.rand(2, 384).cuda()]]
    
    cfg.model.decode_head.use_cls_token = True
    cfg.model.decode_head.num_register_tokens = 4
    vit_feature = [[torch.rand((2, (74 * 74) + 5, 384)).cuda(),\
                    torch.rand((2, (74 * 74) + 5, 384)).cuda(), \
                    torch.rand((2, (74 * 74) + 5, 384)).cuda(), \
                    torch.rand((2, (74 * 74) + 5, 384)).cuda()], (2, 74, 74, 1036, 1036, 4)]

    decoder = RAFTDepthNormalDPT5(cfg).cuda()
    output = decoder(vit_feature)
    temp = 1