Metric3D / mono /utils /avg_meter.py
JUGGHM's picture
Upload 62 files
8a32844
import numpy as np
import torch
import torch.distributed as dist
import torch.nn.functional as F
import matplotlib.pyplot as plt
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self) -> None:
self.reset()
def reset(self) -> None:
self.val = np.longdouble(0.0)
self.avg = np.longdouble(0.0)
self.sum = np.longdouble(0.0)
self.count = np.longdouble(0.0)
def update(self, val, n: float = 1) -> None:
self.val = val
self.sum += val
self.count += n
self.avg = self.sum / (self.count + 1e-6)
class MetricAverageMeter(AverageMeter):
"""
An AverageMeter designed specifically for evaluating segmentation results.
"""
def __init__(self, metrics: list) -> None:
""" Initialize object. """
# average meters for metrics
self.abs_rel = AverageMeter()
self.rmse = AverageMeter()
self.silog = AverageMeter()
self.delta1 = AverageMeter()
self.delta2 = AverageMeter()
self.delta3 = AverageMeter()
self.metrics = metrics
self.consistency = AverageMeter()
self.log10 = AverageMeter()
self.rmse_log = AverageMeter()
self.sq_rel = AverageMeter()
# normal
self.normal_mean = AverageMeter()
self.normal_rmse = AverageMeter()
self.normal_a1 = AverageMeter()
self.normal_a2 = AverageMeter()
self.normal_median = AverageMeter()
self.normal_a3 = AverageMeter()
self.normal_a4 = AverageMeter()
self.normal_a5 = AverageMeter()
def update_metrics_cpu(self,
pred: torch.Tensor,
target: torch.Tensor,
mask: torch.Tensor,):
"""
Update metrics on cpu
"""
assert pred.shape == target.shape
if len(pred.shape) == 3:
pred = pred[:, None, :, :]
target = target[:, None, :, :]
mask = mask[:, None, :, :]
elif len(pred.shape) == 2:
pred = pred[None, None, :, :]
target = target[None, None, :, :]
mask = mask[None, None, :, :]
# Absolute relative error
abs_rel_sum, valid_pics = get_absrel_err(pred, target, mask)
abs_rel_sum = abs_rel_sum.numpy()
valid_pics = valid_pics.numpy()
self.abs_rel.update(abs_rel_sum, valid_pics)
# squared relative error
sqrel_sum, _ = get_sqrel_err(pred, target, mask)
sqrel_sum = sqrel_sum.numpy()
self.sq_rel.update(sqrel_sum, valid_pics)
# root mean squared error
rmse_sum, _ = get_rmse_err(pred, target, mask)
rmse_sum = rmse_sum.numpy()
self.rmse.update(rmse_sum, valid_pics)
# log root mean squared error
log_rmse_sum, _ = get_rmse_log_err(pred, target, mask)
log_rmse_sum = log_rmse_sum.numpy()
self.rmse.update(log_rmse_sum, valid_pics)
# log10 error
log10_sum, _ = get_log10_err(pred, target, mask)
log10_sum = log10_sum.numpy()
self.rmse.update(log10_sum, valid_pics)
# scale-invariant root mean squared error in log space
silog_sum, _ = get_silog_err(pred, target, mask)
silog_sum = silog_sum.numpy()
self.silog.update(silog_sum, valid_pics)
# ratio error, delta1, ....
delta1_sum, delta2_sum, delta3_sum, _ = get_ratio_error(pred, target, mask)
delta1_sum = delta1_sum.numpy()
delta2_sum = delta2_sum.numpy()
delta3_sum = delta3_sum.numpy()
self.delta1.update(delta1_sum, valid_pics)
self.delta2.update(delta1_sum, valid_pics)
self.delta3.update(delta1_sum, valid_pics)
def update_metrics_gpu(
self,
pred: torch.Tensor,
target: torch.Tensor,
mask: torch.Tensor,
is_distributed: bool,
pred_next: torch.tensor = None,
pose_f1_to_f2: torch.tensor = None,
intrinsic: torch.tensor = None):
"""
Update metric on GPU. It supports distributed processing. If multiple machines are employed, please
set 'is_distributed' as True.
"""
assert pred.shape == target.shape
if len(pred.shape) == 3:
pred = pred[:, None, :, :]
target = target[:, None, :, :]
mask = mask[:, None, :, :]
elif len(pred.shape) == 2:
pred = pred[None, None, :, :]
target = target[None, None, :, :]
mask = mask[None, None, :, :]
# Absolute relative error
abs_rel_sum, valid_pics = get_absrel_err(pred, target, mask)
if is_distributed:
dist.all_reduce(abs_rel_sum), dist.all_reduce(valid_pics)
abs_rel_sum = abs_rel_sum.cpu().numpy()
valid_pics = int(valid_pics)
self.abs_rel.update(abs_rel_sum, valid_pics)
# root mean squared error
rmse_sum, _ = get_rmse_err(pred, target, mask)
if is_distributed:
dist.all_reduce(rmse_sum)
rmse_sum = rmse_sum.cpu().numpy()
self.rmse.update(rmse_sum, valid_pics)
# log root mean squared error
log_rmse_sum, _ = get_rmse_log_err(pred, target, mask)
if is_distributed:
dist.all_reduce(log_rmse_sum)
log_rmse_sum = log_rmse_sum.cpu().numpy()
self.rmse_log.update(log_rmse_sum, valid_pics)
# log10 error
log10_sum, _ = get_log10_err(pred, target, mask)
if is_distributed:
dist.all_reduce(log10_sum)
log10_sum = log10_sum.cpu().numpy()
self.log10.update(log10_sum, valid_pics)
# scale-invariant root mean squared error in log space
silog_sum, _ = get_silog_err(pred, target, mask)
if is_distributed:
dist.all_reduce(silog_sum)
silog_sum = silog_sum.cpu().numpy()
self.silog.update(silog_sum, valid_pics)
# ratio error, delta1, ....
delta1_sum, delta2_sum, delta3_sum, _ = get_ratio_error(pred, target, mask)
if is_distributed:
dist.all_reduce(delta1_sum), dist.all_reduce(delta2_sum), dist.all_reduce(delta3_sum)
delta1_sum = delta1_sum.cpu().numpy()
delta2_sum = delta2_sum.cpu().numpy()
delta3_sum = delta3_sum.cpu().numpy()
self.delta1.update(delta1_sum, valid_pics)
self.delta2.update(delta2_sum, valid_pics)
self.delta3.update(delta3_sum, valid_pics)
# video consistency error
consistency_rel_sum, valid_warps = get_video_consistency_err(pred, pred_next, pose_f1_to_f2, intrinsic)
if is_distributed:
dist.all_reduce(consistency_rel_sum), dist.all_reduce(valid_warps)
consistency_rel_sum = consistency_rel_sum.cpu().numpy()
valid_warps = int(valid_warps)
self.consistency.update(consistency_rel_sum, valid_warps)
## for surface normal
def update_normal_metrics_gpu(
self,
pred: torch.Tensor, # (B, 3, H, W)
target: torch.Tensor, # (B, 3, H, W)
mask: torch.Tensor, # (B, 1, H, W)
is_distributed: bool,
):
"""
Update metric on GPU. It supports distributed processing. If multiple machines are employed, please
set 'is_distributed' as True.
"""
assert pred.shape == target.shape
valid_pics = torch.sum(mask, dtype=torch.float32) + 1e-6
if valid_pics < 10:
return
mean_error = rmse_error = a1_error = a2_error = dist_node_cnt = valid_pics
normal_error = torch.cosine_similarity(pred, target, dim=1)
normal_error = torch.clamp(normal_error, min=-1.0, max=1.0)
angle_error = torch.acos(normal_error) * 180.0 / torch.pi
angle_error = angle_error[:, None, :, :]
angle_error = angle_error[mask]
# Calculation error
mean_error = angle_error.sum() / valid_pics
rmse_error = torch.sqrt( torch.sum(torch.square(angle_error)) / valid_pics )
median_error = angle_error.median()
a1_error = 100.0 * (torch.sum(angle_error < 5) / valid_pics)
a2_error = 100.0 * (torch.sum(angle_error < 7.5) / valid_pics)
a3_error = 100.0 * (torch.sum(angle_error < 11.25) / valid_pics)
a4_error = 100.0 * (torch.sum(angle_error < 22.5) / valid_pics)
a5_error = 100.0 * (torch.sum(angle_error < 30) / valid_pics)
# if valid_pics > 1e-5:
# If the current node gets data with valid normal
dist_node_cnt = (valid_pics - 1e-6) / valid_pics
if is_distributed:
dist.all_reduce(dist_node_cnt)
dist.all_reduce(mean_error)
dist.all_reduce(rmse_error)
dist.all_reduce(a1_error)
dist.all_reduce(a2_error)
dist.all_reduce(a3_error)
dist.all_reduce(a4_error)
dist.all_reduce(a5_error)
dist_node_cnt = dist_node_cnt.cpu().numpy()
self.normal_mean.update(mean_error.cpu().numpy(), dist_node_cnt)
self.normal_rmse.update(rmse_error.cpu().numpy(), dist_node_cnt)
self.normal_a1.update(a1_error.cpu().numpy(), dist_node_cnt)
self.normal_a2.update(a2_error.cpu().numpy(), dist_node_cnt)
self.normal_median.update(median_error.cpu().numpy(), dist_node_cnt)
self.normal_a3.update(a3_error.cpu().numpy(), dist_node_cnt)
self.normal_a4.update(a4_error.cpu().numpy(), dist_node_cnt)
self.normal_a5.update(a5_error.cpu().numpy(), dist_node_cnt)
def get_metrics(self,):
"""
"""
metrics_dict = {}
for metric in self.metrics:
metrics_dict[metric] = self.__getattribute__(metric).avg
return metrics_dict
def get_metrics(self,):
"""
"""
metrics_dict = {}
for metric in self.metrics:
metrics_dict[metric] = self.__getattribute__(metric).avg
return metrics_dict
def get_absrel_err(pred: torch.tensor,
target: torch.tensor,
mask: torch.tensor,
):
"""
Computes absolute relative error.
Tasks preprocessed depths (no nans, infs and non-positive values).
pred, target, and mask should be in the shape of [b, c, h, w]
"""
assert len(pred.shape) == 4, len(target.shape) == 4
b, c, h, w = pred.shape
mask = mask.to(torch.float)
t_m = target * mask
p_m = pred * mask
# Mean Absolute Relative Error
rel = torch.abs(t_m - p_m) / (t_m + 1e-10) # compute errors
abs_rel_sum = torch.sum(rel.reshape((b, c, -1)), dim=2) # [b, c]
num = torch.sum(mask.reshape((b, c, -1)), dim=2) # [b, c]
abs_err = abs_rel_sum / (num + 1e-10)
valid_pics = torch.sum(num > 0)
return torch.sum(abs_err), valid_pics
def get_sqrel_err(pred: torch.tensor,
target: torch.tensor,
mask: torch.tensor,
):
"""
Computes squared relative error.
Tasks preprocessed depths (no nans, infs and non-positive values).
pred, target, and mask should be in the shape of [b, c, h, w]
"""
assert len(pred.shape) == 4, len(target.shape) == 4
b, c, h, w = pred.shape
mask = mask.to(torch.float)
t_m = target * mask
p_m = pred * mask
# squared Relative Error
sq_rel = torch.abs(t_m - p_m) ** 2 / (t_m + 1e-10) # compute errors
sq_rel_sum = torch.sum(sq_rel.reshape((b, c, -1)), dim=2) # [b, c]
num = torch.sum(mask.reshape((b, c, -1)), dim=2) # [b, c]
sqrel_err = sq_rel_sum / (num + 1e-10)
valid_pics = torch.sum(num > 0)
return torch.sum(sqrel_err), valid_pics
def get_log10_err(pred: torch.tensor,
target: torch.tensor,
mask: torch.tensor,
):
"""
Computes log10 error.
Tasks preprocessed depths (no nans, infs and non-positive values).
pred, target, and mask should be in the shape of [b, c, h, w]
"""
assert len(pred.shape) == 4, len(target.shape) == 4
b, c, h, w = pred.shape
mask = mask.to(torch.float)
t_m = target * mask
p_m = pred * mask
diff_log = (torch.log10(p_m+1e-10) - torch.log10(t_m+1e-10)) * mask
log10_diff = torch.abs(diff_log)
log10_sum = torch.sum(log10_diff.reshape((b, c, -1)), dim=2) # [b, c]
num = torch.sum(mask.reshape((b, c, -1)), dim=2) # [b, c]
log10_err = log10_sum / (num + 1e-10)
valid_pics = torch.sum(num > 0)
return torch.sum(log10_err), valid_pics
def get_rmse_err(pred: torch.tensor,
target: torch.tensor,
mask: torch.tensor,
):
"""
Computes rmse error.
Tasks preprocessed depths (no nans, infs and non-positive values).
pred, target, and mask should be in the shape of [b, c, h, w]
"""
assert len(pred.shape) == 4, len(target.shape) == 4
b, c, h, w = pred.shape
mask = mask.to(torch.float)
t_m = target * mask
p_m = pred * mask
square = (t_m - p_m) ** 2
rmse_sum = torch.sum(square.reshape((b, c, -1)), dim=2) # [b, c]
num = torch.sum(mask.reshape((b, c, -1)), dim=2) # [b, c]
rmse = torch.sqrt(rmse_sum / (num + 1e-10))
valid_pics = torch.sum(num > 0)
return torch.sum(rmse), valid_pics
def get_rmse_log_err(pred: torch.tensor,
target: torch.tensor,
mask: torch.tensor,
):
"""
Computes log rmse error.
Tasks preprocessed depths (no nans, infs and non-positive values).
pred, target, and mask should be in the shape of [b, c, h, w]
"""
assert len(pred.shape) == 4, len(target.shape) == 4
b, c, h, w = pred.shape
mask = mask.to(torch.float)
t_m = target * mask
p_m = pred * mask
diff_log = (torch.log10(p_m+1e-10) - torch.log10(t_m+1e-10)) * mask
square = diff_log ** 2
rmse_log_sum = torch.sum(square.reshape((b, c, -1)), dim=2) # [b, c]
num = torch.sum(mask.reshape((b, c, -1)), dim=2) # [b, c]
rmse_log = torch.sqrt(rmse_log_sum / (num + 1e-10))
valid_pics = torch.sum(num > 0)
return torch.sum(rmse_log), valid_pics
def get_silog_err(pred: torch.tensor,
target: torch.tensor,
mask: torch.tensor,
):
"""
Computes log rmse error.
Tasks preprocessed depths (no nans, infs and non-positive values).
pred, target, and mask should be in the shape of [b, c, h, w]
"""
assert len(pred.shape) == 4, len(target.shape) == 4
b, c, h, w = pred.shape
mask = mask.to(torch.float)
t_m = target * mask
p_m = pred * mask
diff_log = (torch.log10(p_m+1e-10) - torch.log10(t_m+1e-10)) * mask
diff_log_sum = torch.sum(diff_log.reshape((b, c, -1)), dim=2) # [b, c]
diff_log_square = diff_log ** 2
diff_log_square_sum = torch.sum(diff_log_square.reshape((b, c, -1)), dim=2) # [b, c]
num = torch.sum(mask.reshape((b, c, -1)), dim=2) # [b, c]
silog = torch.sqrt(diff_log_square_sum / (num + 1e-10) - (diff_log_sum / (num + 1e-10)) ** 2)
valid_pics = torch.sum(num > 0)
return torch.sum(silog), valid_pics
def get_ratio_err(pred: torch.tensor,
target: torch.tensor,
mask: torch.tensor,
):
"""
Computes the percentage of pixels for which the ratio of the two depth maps is less than a given threshold.
Tasks preprocessed depths (no nans, infs and non-positive values).
pred, target, and mask should be in the shape of [b, c, h, w]
"""
assert len(pred.shape) == 4, len(target.shape) == 4
b, c, h, w = pred.shape
mask = mask.to(torch.float)
t_m = target * mask
p_m = pred
gt_pred = t_m / (p_m + 1e-10)
pred_gt = p_m / (t_m + 1e-10)
gt_pred = gt_pred.reshape((b, c, -1))
pred_gt = pred_gt.reshape((b, c, -1))
gt_pred_gt = torch.cat((gt_pred, pred_gt), axis=1)
ratio_max = torch.amax(gt_pred_gt, axis=1)
delta_1_sum = torch.sum((ratio_max < 1.25), dim=1) # [b, ]
delta_2_sum = torch.sum((ratio_max < 1.25 ** 2), dim=1) # [b, ]
delta_3_sum = torch.sum((ratio_max < 1.25 ** 3), dim=1) # [b, ]
num = torch.sum(mask.reshape((b, -1)), dim=1) # [b, ]
delta_1 = delta_1_sum / (num + 1e-10)
delta_2 = delta_2_sum / (num + 1e-10)
delta_3 = delta_3_sum / (num + 1e-10)
valid_pics = torch.sum(num > 0)
return torch.sum(delta_1), torch.sum(delta_2), torch.sum(delta_3), valid_pics
if __name__ == '__main__':
cfg = ['abs_rel', 'delta1']
dam = MetricAverageMeter(cfg)
pred_depth = np.random.random([2, 480, 640])
gt_depth = np.random.random([2, 480, 640]) - 0.5
intrinsic = [[100, 100, 200, 200], [200, 200, 300, 300]]
pred = torch.from_numpy(pred_depth).cuda()
gt = torch.from_numpy(gt_depth).cuda()
mask = gt > 0
dam.update_metrics_gpu(pred, gt, mask, False)
eval_error = dam.get_metrics()
print(eval_error)