Metric3D / mono /utils /transform.py
JUGGHM's picture
Update mono/utils/transform.py
d934218 verified
raw
history blame
17.6 kB
import collections
import cv2
import math
import numpy as np
import numbers
import random
import torch
import matplotlib
import matplotlib.cm
"""
Provides a set of Pytorch transforms that use OpenCV instead of PIL (Pytorch default)
for image manipulation.
"""
class Compose(object):
# Composes transforms: transforms.Compose([transforms.RandScale([0.5, 2.0]), transforms.ToTensor()])
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None):
for t in self.transforms:
images, labels, intrinsics, cam_models, other_labels, transform_paras = t(images, labels, intrinsics, cam_models, other_labels, transform_paras)
return images, labels, intrinsics, cam_models, other_labels, transform_paras
class ToTensor(object):
# Converts numpy.ndarray (H x W x C) to a torch.FloatTensor of shape (C x H x W).
def __init__(self, **kwargs):
return
def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None):
if not isinstance(images, list) or not isinstance(labels, list) or not isinstance(intrinsics, list):
raise (RuntimeError("transform.ToTensor() only handle inputs/labels/intrinsics lists."))
if len(images) != len(intrinsics):
raise (RuntimeError("Numbers of images and intrinsics are not matched."))
if not isinstance(images[0], np.ndarray) or not isinstance(labels[0], np.ndarray):
raise (RuntimeError("transform.ToTensor() only handle np.ndarray for the input and label."
"[eg: data readed by cv2.imread()].\n"))
if not isinstance(intrinsics[0], list):
raise (RuntimeError("transform.ToTensor() only handle list for the camera intrinsics"))
if len(images[0].shape) > 3 or len(images[0].shape) < 2:
raise (RuntimeError("transform.ToTensor() only handle image(np.ndarray) with 3 dims or 2 dims.\n"))
if len(labels[0].shape) > 3 or len(labels[0].shape) < 2:
raise (RuntimeError("transform.ToTensor() only handle label(np.ndarray) with 3 dims or 2 dims.\n"))
if len(intrinsics[0]) >4 or len(intrinsics[0]) < 3:
raise (RuntimeError("transform.ToTensor() only handle intrinsic(list) with 3 sizes or 4 sizes.\n"))
for i, img in enumerate(images):
if len(img.shape) == 2:
img = np.expand_dims(img, axis=2)
images[i] = torch.from_numpy(img.transpose((2, 0, 1))).float()
for i, lab in enumerate(labels):
if len(lab.shape) == 2:
lab = np.expand_dims(lab, axis=0)
labels[i] = torch.from_numpy(lab).float()
for i, intrinsic in enumerate(intrinsics):
if len(intrinsic) == 3:
intrinsic = [intrinsic[0],] + intrinsic
intrinsics[i] = torch.tensor(intrinsic, dtype=torch.float)
if cam_models is not None:
for i, cam_model in enumerate(cam_models):
cam_models[i] = torch.from_numpy(cam_model.transpose((2, 0, 1))).float() if cam_model is not None else None
if other_labels is not None:
for i, lab in enumerate(other_labels):
if len(lab.shape) == 2:
lab = np.expand_dims(lab, axis=0)
other_labels[i] = torch.from_numpy(lab).float()
return images, labels, intrinsics, cam_models, other_labels, transform_paras
class Normalize(object):
# Normalize tensor with mean and standard deviation along channel: channel = (channel - mean) / std
def __init__(self, mean, std=None, **kwargs):
if std is None:
assert len(mean) > 0
else:
assert len(mean) == len(std)
self.mean = torch.tensor(mean).float()[:, None, None]
self.std = torch.tensor(std).float()[:, None, None] if std is not None \
else torch.tensor([1.0, 1.0, 1.0]).float()[:, None, None]
def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None):
# if self.std is None:
# # for t, m in zip(image, self.mean):
# # t.sub(m)
# image = image - self.mean
# if ref_images is not None:
# for i, ref_i in enumerate(ref_images):
# ref_images[i] = ref_i - self.mean
# else:
# # for t, m, s in zip(image, self.mean, self.std):
# # t.sub(m).div(s)
# image = (image - self.mean) / self.std
# if ref_images is not None:
# for i, ref_i in enumerate(ref_images):
# ref_images[i] = (ref_i - self.mean) / self.std
for i, img in enumerate(images):
img = torch.div((img - self.mean), self.std)
images[i] = img
return images, labels, intrinsics, cam_models, other_labels, transform_paras
class LableScaleCanonical(object):
"""
To solve the ambiguity observation for the mono branch, i.e. different focal length (object size) with the same depth, cameras are
mapped to a canonical space. To mimic this, we set the focal length to a canonical one and scale the depth value. NOTE: resize the image based on the ratio can also solve
Args:
images: list of RGB images.
labels: list of depth/disparity labels.
other labels: other labels, such as instance segmentations, semantic segmentations...
"""
def __init__(self, **kwargs):
self.canonical_focal = kwargs['focal_length']
def _get_scale_ratio(self, intrinsic):
target_focal_x = intrinsic[0]
label_scale_ratio = self.canonical_focal / target_focal_x
pose_scale_ratio = 1.0
return label_scale_ratio, pose_scale_ratio
def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None):
assert len(images[0].shape) == 3 and len(labels[0].shape) == 2
assert labels[0].dtype == np.float32
label_scale_ratio = None
pose_scale_ratio = None
for i in range(len(intrinsics)):
img_i = images[i]
label_i = labels[i] if i < len(labels) else None
intrinsic_i = intrinsics[i].copy()
cam_model_i = cam_models[i] if cam_models is not None and i < len(cam_models) else None
label_scale_ratio, pose_scale_ratio = self._get_scale_ratio(intrinsic_i)
# adjust the focal length, map the current camera to the canonical space
intrinsics[i] = [intrinsic_i[0] * label_scale_ratio, intrinsic_i[1] * label_scale_ratio, intrinsic_i[2], intrinsic_i[3]]
# scale the label to the canonical space
if label_i is not None:
labels[i] = label_i * label_scale_ratio
if cam_model_i is not None:
# As the focal length is adjusted (canonical focal length), the camera model should be re-built
ori_h, ori_w, _ = img_i.shape
cam_models[i] = build_camera_model(ori_h, ori_w, intrinsics[i])
if transform_paras is not None:
transform_paras.update(label_scale_factor=label_scale_ratio, focal_scale_factor=label_scale_ratio)
return images, labels, intrinsics, cam_models, other_labels, transform_paras
class ResizeKeepRatio(object):
"""
Resize and pad to a given size. Hold the aspect ratio.
This resizing assumes that the camera model remains unchanged.
Args:
resize_size: predefined output size.
"""
def __init__(self, resize_size, padding=None, ignore_label=-1, **kwargs):
if isinstance(resize_size, int):
self.resize_h = resize_size
self.resize_w = resize_size
elif isinstance(resize_size, collections.Iterable) and len(resize_size) == 2 \
and isinstance(resize_size[0], int) and isinstance(resize_size[1], int) \
and resize_size[0] > 0 and resize_size[1] > 0:
self.resize_h = resize_size[0]
self.resize_w = resize_size[1]
else:
raise (RuntimeError("crop size error.\n"))
if padding is None:
self.padding = padding
elif isinstance(padding, list):
if all(isinstance(i, numbers.Number) for i in padding):
self.padding = padding
else:
raise (RuntimeError("padding in Crop() should be a number list\n"))
if len(padding) != 3:
raise (RuntimeError("padding channel is not equal with 3\n"))
else:
raise (RuntimeError("padding in Crop() should be a number list\n"))
if isinstance(ignore_label, int):
self.ignore_label = ignore_label
else:
raise (RuntimeError("ignore_label should be an integer number\n"))
# self.crop_size = kwargs['crop_size']
self.canonical_focal = kwargs['focal_length']
def main_data_transform(self, image, label, intrinsic, cam_model, resize_ratio, padding, to_scale_ratio):
"""
Resize data first and then do the padding.
'label' will be scaled.
"""
h, w, _ = image.shape
reshape_h = int(resize_ratio * h)
reshape_w = int(resize_ratio * w)
pad_h, pad_w, pad_h_half, pad_w_half = padding
# resize
image = cv2.resize(image, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR)
# padding
image = cv2.copyMakeBorder(
image,
pad_h_half,
pad_h - pad_h_half,
pad_w_half,
pad_w - pad_w_half,
cv2.BORDER_CONSTANT,
value=self.padding)
if label is not None:
# label = cv2.resize(label, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST)
label = resize_depth_preserve(label, (reshape_h, reshape_w))
label = cv2.copyMakeBorder(
label,
pad_h_half,
pad_h - pad_h_half,
pad_w_half,
pad_w - pad_w_half,
cv2.BORDER_CONSTANT,
value=self.ignore_label)
# scale the label
label = label / to_scale_ratio
# Resize, adjust principle point
if intrinsic is not None:
intrinsic[0] = intrinsic[0] * resize_ratio / to_scale_ratio
intrinsic[1] = intrinsic[1] * resize_ratio / to_scale_ratio
intrinsic[2] = intrinsic[2] * resize_ratio
intrinsic[3] = intrinsic[3] * resize_ratio
if cam_model is not None:
#cam_model = cv2.resize(cam_model, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR)
cam_model = build_camera_model(reshape_h, reshape_w, intrinsic)
cam_model = cv2.copyMakeBorder(
cam_model,
pad_h_half,
pad_h - pad_h_half,
pad_w_half,
pad_w - pad_w_half,
cv2.BORDER_CONSTANT,
value=self.ignore_label)
# Pad, adjust the principle point
if intrinsic is not None:
intrinsic[2] = intrinsic[2] + pad_w_half
intrinsic[3] = intrinsic[3] + pad_h_half
return image, label, intrinsic, cam_model
def get_label_scale_factor(self, image, intrinsic, resize_ratio):
ori_h, ori_w, _ = image.shape
# crop_h, crop_w = self.crop_size
ori_focal = intrinsic[0]
to_canonical_ratio = self.canonical_focal / ori_focal
to_scale_ratio = resize_ratio / to_canonical_ratio
return to_scale_ratio
def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None):
target_h, target_w, _ = images[0].shape
resize_ratio_h = self.resize_h / target_h
resize_ratio_w = self.resize_w / target_w
resize_ratio = min(resize_ratio_h, resize_ratio_w)
reshape_h = int(resize_ratio * target_h)
reshape_w = int(resize_ratio * target_w)
pad_h = max(self.resize_h - reshape_h, 0)
pad_w = max(self.resize_w - reshape_w, 0)
pad_h_half = int(pad_h / 2)
pad_w_half = int(pad_w / 2)
pad_info = [pad_h, pad_w, pad_h_half, pad_w_half]
to_scale_ratio = self.get_label_scale_factor(images[0], intrinsics[0], resize_ratio)
for i in range(len(images)):
img = images[i]
label = labels[i] if i < len(labels) else None
intrinsic = intrinsics[i] if i < len(intrinsics) else None
cam_model = cam_models[i] if cam_models is not None and i < len(cam_models) else None
img, label, intrinsic, cam_model = self.main_data_transform(
img, label, intrinsic, cam_model, resize_ratio, pad_info, to_scale_ratio)
images[i] = img
if label is not None:
labels[i] = label
if intrinsic is not None:
intrinsics[i] = intrinsic
if cam_model is not None:
cam_models[i] = cam_model
if other_labels is not None:
for i, other_lab in enumerate(other_labels):
# resize
other_lab = cv2.resize(other_lab, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST)
# pad
other_labels[i] = cv2.copyMakeBorder(
other_lab,
pad_h_half,
pad_h - pad_h_half,
pad_w_half,
pad_w - pad_w_half,
cv2.BORDER_CONSTANT,
value=self.ignore_label)
pad = [pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half]
if transform_paras is not None:
pad_old = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]
new_pad = [pad_old[0] + pad[0], pad_old[1] + pad[1], pad_old[2] + pad[2], pad_old[3] + pad[3]]
transform_paras.update(dict(pad=new_pad))
if 'label_scale_factor' in transform_paras:
transform_paras['label_scale_factor'] = transform_paras['label_scale_factor'] * 1.0 / to_scale_ratio
else:
transform_paras.update(label_scale_factor=1.0/to_scale_ratio)
return images, labels, intrinsics, cam_models, other_labels, transform_paras
class BGR2RGB(object):
# Converts image from BGR order to RGB order, for model initialized from Pytorch
def __init__(self, **kwargs):
return
def __call__(self, images, labels, intrinsics, cam_models=None,other_labels=None, transform_paras=None):
for i, img in enumerate(images):
images[i] = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return images, labels, intrinsics, cam_models, other_labels, transform_paras
def resize_depth_preserve(depth, shape):
"""
Resizes depth map preserving all valid depth pixels
Multiple downsampled points can be assigned to the same pixel.
Parameters
----------
depth : np.array [h,w]
Depth map
shape : tuple (H,W)
Output shape
Returns
-------
depth : np.array [H,W,1]
Resized depth map
"""
# Store dimensions and reshapes to single column
depth = np.squeeze(depth)
h, w = depth.shape
x = depth.reshape(-1)
# Create coordinate grid
uv = np.mgrid[:h, :w].transpose(1, 2, 0).reshape(-1, 2)
# Filters valid points
idx = x > 0
crd, val = uv[idx], x[idx]
# Downsamples coordinates
crd[:, 0] = (crd[:, 0] * (shape[0] / h) + 0.5).astype(np.int32)
crd[:, 1] = (crd[:, 1] * (shape[1] / w) + 0.5).astype(np.int32)
# Filters points inside image
idx = (crd[:, 0] < shape[0]) & (crd[:, 1] < shape[1])
crd, val = crd[idx], val[idx]
# Creates downsampled depth image and assigns points
depth = np.zeros(shape)
depth[crd[:, 0], crd[:, 1]] = val
# Return resized depth map
return depth
def build_camera_model(H : int, W : int, intrinsics : list) -> np.array:
"""
Encode the camera intrinsic parameters (focal length and principle point) to a 4-channel map.
"""
fx, fy, u0, v0 = intrinsics
f = (fx + fy) / 2.0
# principle point location
x_row = np.arange(0, W).astype(np.float32)
x_row_center_norm = (x_row - u0) / W
x_center = np.tile(x_row_center_norm, (H, 1)) # [H, W]
y_col = np.arange(0, H).astype(np.float32)
y_col_center_norm = (y_col - v0) / H
y_center = np.tile(y_col_center_norm, (W, 1)).T
# FoV
fov_x = np.arctan(x_center / (f / W))
fov_y = np.arctan(y_center/ (f / H))
cam_model = np.stack([x_center, y_center, fov_x, fov_y], axis=2)
return cam_model
def gray_to_colormap(img, cmap='rainbow'):
"""
Transfer gray map to matplotlib colormap
"""
assert img.ndim == 2
img[img<0] = 0
mask_invalid = img < 1e-10
#img = img / (img.max() + 1e-8)
img_ = img.flatten()
max_value = np.percentile(img_, q=98)
img = img / (max_value + 1e-8)
norm = matplotlib.colors.Normalize(vmin=0, vmax=1.1)
cmap_m = matplotlib.cm.get_cmap(cmap)
map = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap_m)
colormap = (map.to_rgba(img)[:, :, :3] * 255).astype(np.uint8)
colormap[mask_invalid] = 0
return colormap