Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import torch | |
from demos.SkinCancerClass.model import predict | |
class_names = [ 'benign_keratosis-like_lesions','basal_cell_carcinoma','actinic_keratoses','dermatofibroma','melanocytic_Nevi'] | |
example_names = ["actinic_keratoses","basal_cell_carcinoma","melanocytic_Nevi"] | |
title = "Skin Cancer Classifier" | |
description = "An ViT computer vision model to classify images from HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. <br/> List: benign_keratosis-like_lesions, basal_cell_carcinoma, actinic_keratoses, dermatofibroma, melanocytic_Nevi" | |
article = "https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T" | |
# Create examples list from "examples/" directory | |
example_list = [["examples/" + example, example.split('_')[0]] for example in os.listdir("examples")] | |
# print(example_list) | |
# result , timing = predict(example_list[0]) | |
# | |
# Create a single dictionary | |
# Output the combined dictionary | |
# print(combined_dict) | |
# Create the Gradio demo | |
# The output of the prediction must be in a dictionary format! | |
demo = gr.Interface(fn=predict, # mapping function from input to output | |
inputs=gr.Image(type="pil"), # what are the inputs? | |
outputs=[gr.Label(num_top_classes=5, label="Predictions"), # what are the outputs? | |
gr.Number(label="Prediction time (s)")], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article, | |
example_labels=example_names) | |
# Launch the demo! | |
demo.launch(debug=False, # print errors locally? | |
share=True) # generate a publically shareable URL? |