import gradio as gr import os import torch from demos.SkinCancerClass.model import predict class_names = [ 'benign_keratosis-like_lesions','basal_cell_carcinoma','actinic_keratoses','dermatofibroma','melanocytic_Nevi'] example_names = ["actinic_keratoses","basal_cell_carcinoma","melanocytic_Nevi"] title = "Skin Cancer Classifier" description = "An ViT computer vision model to classify images from HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions.
List: benign_keratosis-like_lesions, basal_cell_carcinoma, actinic_keratoses, dermatofibroma, melanocytic_Nevi" article = "https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T" # Create examples list from "examples/" directory example_list = [["examples/" + example, example.split('_')[0]] for example in os.listdir("examples")] # print(example_list) # result , timing = predict(example_list[0]) # # Create a single dictionary # Output the combined dictionary # print(combined_dict) # Create the Gradio demo # The output of the prediction must be in a dictionary format! demo = gr.Interface(fn=predict, # mapping function from input to output inputs=gr.Image(type="pil"), # what are the inputs? outputs=[gr.Label(num_top_classes=5, label="Predictions"), # what are the outputs? gr.Number(label="Prediction time (s)")], examples=example_list, title=title, description=description, article=article, example_labels=example_names) # Launch the demo! demo.launch(debug=False, # print errors locally? share=True) # generate a publically shareable URL?