Spaces:
Runtime error
Runtime error
import gradio as gr | |
from multiprocessing import cpu_count | |
from utils.shared import model_ids, scheduler_names, default_scheduler | |
default_img_size = 512 | |
with open("html/header.html") as fp: | |
header = fp.read() | |
with open("html/footer.html") as fp: | |
footer = fp.read() | |
with gr.Blocks(css="html/style.css") as demo: | |
pipe_state = gr.State(lambda: 1) | |
gr.HTML(header) | |
with gr.Row(): | |
with gr.Column(scale=70): | |
# with gr.Row(): | |
prompt = gr.Textbox( | |
label="Prompt", placeholder="<Shift+Enter> to generate", lines=2 | |
) | |
neg_prompt = gr.Textbox(label="Negative Prompt", placeholder="", lines=2) | |
with gr.Column(scale=30): | |
model_name = gr.Dropdown( | |
label="Model", choices=model_ids, value=model_ids[0] | |
) | |
scheduler_name = gr.Dropdown( | |
label="Scheduler", choices=scheduler_names, value=default_scheduler | |
) | |
generate_button = gr.Button(value="Generate", elem_id="generate-button") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tab("Text to Image") as tab: | |
tab.select(lambda: 1, [], pipe_state) | |
with gr.Tab("Image to image") as tab: | |
tab.select(lambda: 2, [], pipe_state) | |
image = gr.Image( | |
label="Image to Image", | |
source="upload", | |
tool="editor", | |
type="pil", | |
elem_id="image_upload", | |
).style(height=default_img_size) | |
strength = gr.Slider( | |
label="Denoising strength", | |
minimum=0, | |
maximum=1, | |
step=0.02, | |
value=0.8, | |
) | |
with gr.Tab("Inpainting") as tab: | |
tab.select(lambda: 3, [], pipe_state) | |
inpaint_image = gr.Image( | |
label="Inpainting", | |
source="upload", | |
tool="sketch", | |
type="pil", | |
elem_id="image_upload", | |
).style(height=default_img_size) | |
inpaint_strength = gr.Slider( | |
label="Denoising strength", | |
minimum=0, | |
maximum=1, | |
step=0.02, | |
value=0.8, | |
) | |
inpaint_options = [ | |
"preserve non-masked portions of image", | |
"output entire inpainted image", | |
] | |
inpaint_radio = gr.Radio( | |
inpaint_options, | |
value=inpaint_options[0], | |
show_label=False, | |
interactive=True, | |
) | |
with gr.Tab("Textual Inversion") as tab: | |
tab.select(lambda: 4, [], pipe_state) | |
type_of_thing = gr.Dropdown( | |
label="What would you like to train?", | |
choices=["object", "person", "style"], | |
value="object", | |
interactive=True, | |
) | |
text_train_bsz = gr.Slider( | |
label="Training Batch Size", | |
minimum=1, | |
maximum=8, | |
step=1, | |
value=1, | |
) | |
files = gr.File( | |
label=f"""Upload the images for your concept""", | |
file_count="multiple", | |
interactive=True, | |
visible=True, | |
) | |
text_train_steps = gr.Number(label="How many steps", value=1000) | |
text_learning_rate = gr.Number(label="Learning Rate", value=5.0e-4) | |
concept_word = gr.Textbox( | |
label=f"""concept word - use a unique, made up word to avoid collisions""" | |
) | |
init_word = gr.Textbox( | |
label=f"""initial word - to init the concept embedding""" | |
) | |
textual_inversion_button = gr.Button(value="Train Textual Inversion") | |
training_status = gr.Text(label="Training Status") | |
with gr.Row(): | |
batch_size = gr.Slider( | |
label="Batch Size", value=1, minimum=1, maximum=8, step=1 | |
) | |
seed = gr.Slider(-1, 2147483647, label="Seed", value=-1, step=1) | |
with gr.Row(): | |
guidance = gr.Slider( | |
label="Guidance scale", value=7.5, minimum=0, maximum=20 | |
) | |
steps = gr.Slider( | |
label="Steps", value=20, minimum=1, maximum=100, step=1 | |
) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
value=default_img_size, | |
minimum=64, | |
maximum=1024, | |
step=32, | |
) | |
height = gr.Slider( | |
label="Height", | |
value=default_img_size, | |
minimum=64, | |
maximum=1024, | |
step=32, | |
) | |
with gr.Column(): | |
gallery = gr.Gallery( | |
label="Generated images", show_label=False, elem_id="gallery" | |
).style(height=default_img_size, grid=2) | |
generation_details = gr.Markdown() | |
pipe_kwargs = gr.Textbox(label="Pipe kwargs", value="{\n\t\n}") | |
# if torch.cuda.is_available(): | |
# giga = 2**30 | |
# vram_guage = gr.Slider(0, torch.cuda.memory_reserved(0)/giga, label='VRAM Allocated to Reserved (GB)', value=0, step=1) | |
# demo.load(lambda : torch.cuda.memory_allocated(0)/giga, inputs=[], outputs=vram_guage, every=0.5, show_progress=False) | |
gr.HTML(footer) | |
inputs = [ | |
model_name, | |
scheduler_name, | |
prompt, | |
guidance, | |
steps, | |
batch_size, | |
width, | |
height, | |
seed, | |
image, | |
strength, | |
inpaint_image, | |
inpaint_strength, | |
inpaint_radio, | |
neg_prompt, | |
pipe_state, | |
pipe_kwargs, | |
] | |
outputs = [gallery, generation_details] | |
prompt.submit(generate, inputs=inputs, outputs=outputs) | |
generate_button.click(generate, inputs=inputs, outputs=outputs) | |
textual_inversion_inputs = [ | |
model_name, | |
scheduler_name, | |
type_of_thing, | |
files, | |
concept_word, | |
init_word, | |
text_train_steps, | |
text_train_bsz, | |
text_learning_rate, | |
] | |
textual_inversion_button.click( | |
train_textual_inversion, | |
inputs=textual_inversion_inputs, | |
outputs=[training_status], | |
) | |
# demo = gr.TabbedInterface([demo, dreambooth_tab], ["Main", "Dreambooth"]) | |
demo.queue(concurrency_count=cpu_count()) | |
demo.launch() | |