import gradio as gr from multiprocessing import cpu_count from utils.shared import model_ids, scheduler_names, default_scheduler default_img_size = 512 with open("html/header.html") as fp: header = fp.read() with open("html/footer.html") as fp: footer = fp.read() with gr.Blocks(css="html/style.css") as demo: pipe_state = gr.State(lambda: 1) gr.HTML(header) with gr.Row(): with gr.Column(scale=70): # with gr.Row(): prompt = gr.Textbox( label="Prompt", placeholder=" to generate", lines=2 ) neg_prompt = gr.Textbox(label="Negative Prompt", placeholder="", lines=2) with gr.Column(scale=30): model_name = gr.Dropdown( label="Model", choices=model_ids, value=model_ids[0] ) scheduler_name = gr.Dropdown( label="Scheduler", choices=scheduler_names, value=default_scheduler ) generate_button = gr.Button(value="Generate", elem_id="generate-button") with gr.Row(): with gr.Column(): with gr.Tab("Text to Image") as tab: tab.select(lambda: 1, [], pipe_state) with gr.Tab("Image to image") as tab: tab.select(lambda: 2, [], pipe_state) image = gr.Image( label="Image to Image", source="upload", tool="editor", type="pil", elem_id="image_upload", ).style(height=default_img_size) strength = gr.Slider( label="Denoising strength", minimum=0, maximum=1, step=0.02, value=0.8, ) with gr.Tab("Inpainting") as tab: tab.select(lambda: 3, [], pipe_state) inpaint_image = gr.Image( label="Inpainting", source="upload", tool="sketch", type="pil", elem_id="image_upload", ).style(height=default_img_size) inpaint_strength = gr.Slider( label="Denoising strength", minimum=0, maximum=1, step=0.02, value=0.8, ) inpaint_options = [ "preserve non-masked portions of image", "output entire inpainted image", ] inpaint_radio = gr.Radio( inpaint_options, value=inpaint_options[0], show_label=False, interactive=True, ) with gr.Tab("Textual Inversion") as tab: tab.select(lambda: 4, [], pipe_state) type_of_thing = gr.Dropdown( label="What would you like to train?", choices=["object", "person", "style"], value="object", interactive=True, ) text_train_bsz = gr.Slider( label="Training Batch Size", minimum=1, maximum=8, step=1, value=1, ) files = gr.File( label=f"""Upload the images for your concept""", file_count="multiple", interactive=True, visible=True, ) text_train_steps = gr.Number(label="How many steps", value=1000) text_learning_rate = gr.Number(label="Learning Rate", value=5.0e-4) concept_word = gr.Textbox( label=f"""concept word - use a unique, made up word to avoid collisions""" ) init_word = gr.Textbox( label=f"""initial word - to init the concept embedding""" ) textual_inversion_button = gr.Button(value="Train Textual Inversion") training_status = gr.Text(label="Training Status") with gr.Row(): batch_size = gr.Slider( label="Batch Size", value=1, minimum=1, maximum=8, step=1 ) seed = gr.Slider(-1, 2147483647, label="Seed", value=-1, step=1) with gr.Row(): guidance = gr.Slider( label="Guidance scale", value=7.5, minimum=0, maximum=20 ) steps = gr.Slider( label="Steps", value=20, minimum=1, maximum=100, step=1 ) with gr.Row(): width = gr.Slider( label="Width", value=default_img_size, minimum=64, maximum=1024, step=32, ) height = gr.Slider( label="Height", value=default_img_size, minimum=64, maximum=1024, step=32, ) with gr.Column(): gallery = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery" ).style(height=default_img_size, grid=2) generation_details = gr.Markdown() pipe_kwargs = gr.Textbox(label="Pipe kwargs", value="{\n\t\n}") # if torch.cuda.is_available(): # giga = 2**30 # vram_guage = gr.Slider(0, torch.cuda.memory_reserved(0)/giga, label='VRAM Allocated to Reserved (GB)', value=0, step=1) # demo.load(lambda : torch.cuda.memory_allocated(0)/giga, inputs=[], outputs=vram_guage, every=0.5, show_progress=False) gr.HTML(footer) inputs = [ model_name, scheduler_name, prompt, guidance, steps, batch_size, width, height, seed, image, strength, inpaint_image, inpaint_strength, inpaint_radio, neg_prompt, pipe_state, pipe_kwargs, ] outputs = [gallery, generation_details] prompt.submit(generate, inputs=inputs, outputs=outputs) generate_button.click(generate, inputs=inputs, outputs=outputs) textual_inversion_inputs = [ model_name, scheduler_name, type_of_thing, files, concept_word, init_word, text_train_steps, text_train_bsz, text_learning_rate, ] textual_inversion_button.click( train_textual_inversion, inputs=textual_inversion_inputs, outputs=[training_status], ) # demo = gr.TabbedInterface([demo, dreambooth_tab], ["Main", "Dreambooth"]) demo.queue(concurrency_count=cpu_count()) demo.launch()