JackismyShephard commited on
Commit
77862e1
·
1 Parent(s): dbfdf1a

implement audio translation to danish speech

Browse files
Files changed (1) hide show
  1. app.py +74 -32
app.py CHANGED
@@ -1,72 +1,114 @@
1
  import gradio as gr
2
  import numpy as np
3
  import torch
4
- from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
 
8
 
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
- asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
 
 
 
 
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
 
 
 
 
 
 
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
 
19
 
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
 
 
 
 
 
 
26
  return outputs["text"]
27
 
28
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
- return speech.cpu()
 
 
 
 
 
 
 
 
 
 
33
 
34
 
35
  def speech_to_speech_translation(audio):
36
  translated_text = translate(audio)
37
- synthesised_speech = synthesise(translated_text)
38
- synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
39
- return 16000, synthesised_speech
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
 
42
  title = "Cascaded STST"
43
  description = """
44
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
- [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
 
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """
49
 
50
- demo = gr.Blocks()
51
-
52
- mic_translate = gr.Interface(
53
  fn=speech_to_speech_translation,
54
- inputs=gr.Audio(source="microphone", type="filepath"),
55
- outputs=gr.Audio(label="Generated Speech", type="numpy"),
56
- title=title,
57
- description=description,
58
- )
59
-
60
- file_translate = gr.Interface(
61
- fn=speech_to_speech_translation,
62
- inputs=gr.Audio(source="upload", type="filepath"),
63
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
64
  examples=[["./example.wav"]],
65
  title=title,
66
  description=description,
67
  )
68
 
69
- with demo:
70
- gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
71
-
72
  demo.launch()
 
1
  import gradio as gr
2
  import numpy as np
3
  import torch
 
4
 
5
+ from transformers import pipeline
6
 
7
+ checkpoint_finetuned = "JackismyShephard/speecht5_tts-finetuned-nst-da"
8
 
9
+ revision = "5af228df418092b681cf31c31e413bdd2b5f9c8c"
10
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
11
 
12
  # load speech translation checkpoint
13
+ asr_pipe = pipeline(
14
+ "automatic-speech-recognition",
15
+ model="openai/whisper-base",
16
+ device=device,
17
+ )
18
 
19
  # load text-to-speech checkpoint and speaker embeddings
20
+ pipe = pipeline(
21
+ "text-to-speech",
22
+ model=checkpoint_finetuned,
23
+ use_fast=True,
24
+ device=device,
25
+ revision=revision,
26
+ )
27
 
28
+ speaker_embedding_path = "female_23_vestjylland.npy"
29
+ speaker_embedding = np.load(speaker_embedding_path)
30
+ speaker_embedding_tensor = torch.tensor(speaker_embedding).unsqueeze(0)
31
 
32
+ target_dtype = np.int16
33
+ max_range = np.iinfo(target_dtype).max
34
 
35
 
36
  def translate(audio):
37
+ outputs = asr_pipe(
38
+ audio,
39
+ max_new_tokens=256,
40
+ batch_size=8,
41
+ chunk_length_s=30,
42
+ generate_kwargs={"task": "translate", "language": "danish"},
43
+ )
44
  return outputs["text"]
45
 
46
 
47
  def synthesise(text):
48
+ if len(text.strip()) == 0:
49
+ return (16000, np.zeros(0))
50
+
51
+ text = replace_danish_letters(text)
52
+
53
+ forward_params = {"speaker_embeddings": speaker_embedding}
54
+ speech = pipe(text, forward_params=forward_params)
55
+
56
+ sr, audio = speech["sampling_rate"], speech["audio"]
57
+
58
+ audio = (audio * max_range).astype(np.int16)
59
+
60
+ return sr, audio
61
 
62
 
63
  def speech_to_speech_translation(audio):
64
  translated_text = translate(audio)
65
+ return synthesise(translated_text)
66
+
67
+
68
+ def replace_danish_letters(text):
69
+ for src, dst in replacements:
70
+ text = text.replace(src, dst)
71
+ return text
72
+
73
+
74
+ replacements = [
75
+ ("&", "og"),
76
+ ("\r", " "),
77
+ ("´", ""),
78
+ ("\\", ""),
79
+ ("¨", " "),
80
+ ("Å", "AA"),
81
+ ("Æ", "AE"),
82
+ ("É", "E"),
83
+ ("Ö", "OE"),
84
+ ("Ø", "OE"),
85
+ ("á", "a"),
86
+ ("ä", "ae"),
87
+ ("å", "aa"),
88
+ ("è", "e"),
89
+ ("î", "i"),
90
+ ("ô", "oe"),
91
+ ("ö", "oe"),
92
+ ("ø", "oe"),
93
+ ("ü", "y"),
94
+ ]
95
 
96
 
97
  title = "Cascaded STST"
98
  description = """
99
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Danish. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and JackismyShephard's
100
+ [speecht5_tts-finetuned-nst-da](https://huggingface.co/JackismyShephard/speecht5_tts-finetuned-nst-da) model for text-to-speech:
101
 
102
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
103
  """
104
 
105
+ demo = gr.Interface(
 
 
106
  fn=speech_to_speech_translation,
107
+ inputs=gr.Audio(type="filepath"),
 
 
 
 
 
 
 
 
108
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
109
  examples=[["./example.wav"]],
110
  title=title,
111
  description=description,
112
  )
113
 
 
 
 
114
  demo.launch()