Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
from PIL import Image | |
import requests | |
from transformers import BlipProcessor, BlipForConditionalGeneration | |
# Initialize the pipeline | |
pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large") | |
# Initialize processor and model | |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") | |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") | |
def image_caption(image, text_prompt=None): | |
# Conditional image captioning if text prompt is provided | |
if text_prompt: | |
inputs = processor(image, text_prompt, return_tensors="pt") | |
out = model.generate(**inputs) | |
caption = processor.decode(out[0], skip_special_tokens=True) | |
else: | |
# Unconditional image captioning | |
inputs = processor(image, return_tensors="pt") | |
out = model.generate(**inputs) | |
caption = processor.decode(out[0], skip_special_tokens=True) | |
return caption | |
# Define the Gradio interface | |
image_input = gr.Image(type="pil", label="Upload an Image") | |
text_input = gr.Textbox(lines=1, placeholder="Optional: Enter text prompt", label="Text Prompt") | |
output = gr.Textbox(label="Generated Caption") | |
gr.Interface( | |
fn=image_caption, | |
inputs=[image_input, text_input], | |
outputs=output, | |
title="Image Captioning with BLIP", | |
description="Upload an image and get a generated caption. Optionally, provide a text prompt for conditional captioning." | |
).launch() | |