|
import argparse |
|
import json |
|
import os |
|
import re |
|
import tempfile |
|
from pathlib import Path |
|
|
|
import librosa |
|
import numpy as np |
|
import torch |
|
from torch import no_grad, LongTensor |
|
import commons |
|
import utils |
|
import gradio as gr |
|
import gradio.utils as gr_utils |
|
import gradio.processing_utils as gr_processing_utils |
|
from models import SynthesizerTrn |
|
from text import text_to_sequence, _clean_text |
|
from mel_processing import spectrogram_torch |
|
|
|
limitation = os.getenv("SYSTEM") == "spaces" |
|
|
|
audio_postprocess_ori = gr.Audio.postprocess |
|
|
|
|
|
def audio_postprocess(self, y): |
|
data = audio_postprocess_ori(self, y) |
|
if data is None: |
|
return None |
|
return gr_processing_utils.encode_url_or_file_to_base64(data["name"]) |
|
|
|
|
|
gr.Audio.postprocess = audio_postprocess |
|
|
|
|
|
def get_text(text, hps, is_symbol): |
|
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners) |
|
if hps.data.add_blank: |
|
text_norm = commons.intersperse(text_norm, 0) |
|
text_norm = LongTensor(text_norm) |
|
return text_norm |
|
|
|
|
|
def create_tts_fn(model, hps, speaker_ids): |
|
def tts_fn(text, speaker, speed, is_symbol): |
|
if limitation: |
|
text_len = len(re.sub("\[([A-Z]{2})\]", "", text)) |
|
max_len = 900 |
|
if is_symbol: |
|
max_len *= 3 |
|
if text_len > max_len: |
|
return "Error: Text is too long", None |
|
|
|
speaker_id = speaker_ids[speaker] |
|
stn_tst = get_text(text, hps, is_symbol) |
|
with no_grad(): |
|
x_tst = stn_tst.unsqueeze(0).to(device) |
|
x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device) |
|
sid = LongTensor([speaker_id]).to(device) |
|
audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, |
|
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy() |
|
del stn_tst, x_tst, x_tst_lengths, sid |
|
return "Success", (hps.data.sampling_rate, audio) |
|
|
|
return tts_fn |
|
|
|
|
|
def create_vc_fn(model, hps, speaker_ids): |
|
def vc_fn(original_speaker, target_speaker, input_audio): |
|
if input_audio is None: |
|
return "You need to upload an audio", None |
|
sampling_rate, audio = input_audio |
|
duration = audio.shape[0] / sampling_rate |
|
if limitation and duration > 30: |
|
return "Error: Audio is too long", None |
|
original_speaker_id = speaker_ids[original_speaker] |
|
target_speaker_id = speaker_ids[target_speaker] |
|
|
|
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) |
|
if len(audio.shape) > 1: |
|
audio = librosa.to_mono(audio.transpose(1, 0)) |
|
if sampling_rate != hps.data.sampling_rate: |
|
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate) |
|
with no_grad(): |
|
y = torch.FloatTensor(audio) |
|
y = y.unsqueeze(0) |
|
spec = spectrogram_torch(y, hps.data.filter_length, |
|
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, |
|
center=False).to(device) |
|
spec_lengths = LongTensor([spec.size(-1)]).to(device) |
|
sid_src = LongTensor([original_speaker_id]).to(device) |
|
sid_tgt = LongTensor([target_speaker_id]).to(device) |
|
audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][ |
|
0, 0].data.cpu().float().numpy() |
|
del y, spec, spec_lengths, sid_src, sid_tgt |
|
return "Success", (hps.data.sampling_rate, audio) |
|
|
|
return vc_fn |
|
|
|
|
|
def create_soft_vc_fn(model, hps, speaker_ids): |
|
def soft_vc_fn(target_speaker, input_audio1, input_audio2): |
|
input_audio = input_audio1 |
|
if input_audio is None: |
|
input_audio = input_audio2 |
|
if input_audio is None: |
|
return "You need to upload an audio", None |
|
sampling_rate, audio = input_audio |
|
duration = audio.shape[0] / sampling_rate |
|
if limitation and duration > 30: |
|
return "Error: Audio is too long", None |
|
target_speaker_id = speaker_ids[target_speaker] |
|
|
|
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) |
|
if len(audio.shape) > 1: |
|
audio = librosa.to_mono(audio.transpose(1, 0)) |
|
if sampling_rate != 16000: |
|
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) |
|
with torch.inference_mode(): |
|
units = hubert.units(torch.FloatTensor(audio).unsqueeze(0).unsqueeze(0).to(device)) |
|
with no_grad(): |
|
unit_lengths = LongTensor([units.size(1)]).to(device) |
|
sid = LongTensor([target_speaker_id]).to(device) |
|
audio = model.infer(units, unit_lengths, sid=sid, noise_scale=.667, |
|
noise_scale_w=0.8)[0][0, 0].data.cpu().float().numpy() |
|
del units, unit_lengths, sid |
|
return "Success", (hps.data.sampling_rate, audio) |
|
|
|
return soft_vc_fn |
|
|
|
|
|
def create_to_symbol_fn(hps): |
|
def to_symbol_fn(is_symbol_input, input_text, temp_text): |
|
return (_clean_text(input_text, hps.data.text_cleaners), input_text) if is_symbol_input \ |
|
else (temp_text, temp_text) |
|
|
|
return to_symbol_fn |
|
|
|
|
|
download_audio_js = """ |
|
() =>{{ |
|
let root = document.querySelector("body > gradio-app"); |
|
if (root.shadowRoot != null) |
|
root = root.shadowRoot; |
|
let audio = root.querySelector("#{audio_id}").querySelector("audio"); |
|
if (audio == undefined) |
|
return; |
|
audio = audio.src; |
|
let oA = document.createElement("a"); |
|
oA.download = Math.floor(Math.random()*100000000)+'.wav'; |
|
oA.href = audio; |
|
document.body.appendChild(oA); |
|
oA.click(); |
|
oA.remove(); |
|
}} |
|
""" |
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--device', type=str, default='cpu') |
|
parser.add_argument("--share", action="store_true", default=False, help="share gradio app") |
|
args = parser.parse_args() |
|
|
|
device = torch.device(args.device) |
|
models_tts = [] |
|
models_vc = [] |
|
models_soft_vc = [] |
|
with open("saved_model/info.json", "r", encoding="utf-8") as f: |
|
models_info = json.load(f) |
|
for i, info in models_info.items(): |
|
name = info["title"] |
|
author = info["author"] |
|
lang = info["lang"] |
|
example = info["example"] |
|
config_path = f"saved_model/{i}/config.json" |
|
model_path = f"saved_model/{i}/model.pth" |
|
cover = info["cover"] |
|
cover_path = f"saved_model/{i}/{cover}" if cover else None |
|
hps = utils.get_hparams_from_file(config_path) |
|
model = SynthesizerTrn( |
|
len(hps.symbols), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model) |
|
utils.load_checkpoint(model_path, model, None) |
|
model.eval().to(device) |
|
speaker_ids = [sid for sid, name in enumerate(hps.speakers) if name != "None"] |
|
speakers = [name for sid, name in enumerate(hps.speakers) if name != "None"] |
|
|
|
t = info["type"] |
|
if t == "vits": |
|
models_tts.append((name, author, cover_path, speakers, lang, example, |
|
hps.symbols, create_tts_fn(model, hps, speaker_ids), |
|
create_to_symbol_fn(hps))) |
|
models_vc.append((name, author, cover_path, speakers, create_vc_fn(model, hps, speaker_ids))) |
|
elif t == "soft-vits-vc": |
|
models_soft_vc.append((name, author, cover_path, speakers, create_soft_vc_fn(model, hps, speaker_ids))) |
|
|
|
hubert = torch.hub.load("bshall/hubert:main", "hubert_soft", trust_repo=True).to(device) |
|
|
|
app = gr.Blocks() |
|
|
|
with app: |
|
gr.Markdown("# Moe TTS And Voice Conversion Using VITS Model\n\n" |
|
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=skytnt.moegoe)\n\n" |
|
"[Open In Colab]" |
|
"(https://colab.research.google.com/drive/14Pb8lpmwZL-JI5Ub6jpG4sz2-8KS0kbS?usp=sharing)" |
|
" without queue and length limitation.\n\n" |
|
"Feel free to [open discussion](https://huggingface.co/spaces/skytnt/moe-tts/discussions/new) " |
|
"if you want to add your model to this app.") |
|
with gr.Tabs(): |
|
with gr.TabItem("TTS"): |
|
with gr.Tabs(): |
|
for i, (name, author, cover_path, speakers, lang, example, symbols, tts_fn, |
|
to_symbol_fn) in enumerate(models_tts): |
|
with gr.TabItem(f"model{i}"): |
|
with gr.Column(): |
|
cover_markdown = f"![cover](file/{cover_path})\n\n" if cover_path else "" |
|
gr.Markdown(f"## {name}\n\n" |
|
f"{cover_markdown}" |
|
f"model author: {author}\n\n" |
|
f"language: {lang}") |
|
tts_input1 = gr.TextArea(label="Text (150 words limitation)", value=example, |
|
elem_id=f"tts-input{i}") |
|
tts_input2 = gr.Dropdown(label="Speaker", choices=speakers, |
|
type="index", value=speakers[0]) |
|
tts_input3 = gr.Slider(label="Speed", value=1, minimum=0.5, maximum=2, step=0.1) |
|
with gr.Accordion(label="Advanced Options", open=False): |
|
temp_text_var = gr.Variable() |
|
symbol_input = gr.Checkbox(value=False, label="Symbol input") |
|
symbol_list = gr.Dataset(label="Symbol list", components=[tts_input1], |
|
samples=[[x] for x in symbols], |
|
elem_id=f"symbol-list{i}") |
|
symbol_list_json = gr.Json(value=symbols, visible=False) |
|
tts_submit = gr.Button("Generate", variant="primary") |
|
tts_output1 = gr.Textbox(label="Output Message") |
|
tts_output2 = gr.Audio(label="Output Audio", elem_id=f"tts-audio{i}") |
|
download = gr.Button("Download Audio") |
|
download.click(None, [], [], _js=download_audio_js.format(audio_id=f"tts-audio{i}")) |
|
|
|
tts_submit.click(tts_fn, [tts_input1, tts_input2, tts_input3, symbol_input], |
|
[tts_output1, tts_output2],api_name="TTS") |
|
symbol_input.change(to_symbol_fn, |
|
[symbol_input, tts_input1, temp_text_var], |
|
[tts_input1, temp_text_var]) |
|
symbol_list.click(None, [symbol_list, symbol_list_json], [], |
|
_js=f""" |
|
(i,symbols) => {{ |
|
let root = document.querySelector("body > gradio-app"); |
|
if (root.shadowRoot != null) |
|
root = root.shadowRoot; |
|
let text_input = root.querySelector("#tts-input{i}").querySelector("textarea"); |
|
let startPos = text_input.selectionStart; |
|
let endPos = text_input.selectionEnd; |
|
let oldTxt = text_input.value; |
|
let result = oldTxt.substring(0, startPos) + symbols[i] + oldTxt.substring(endPos); |
|
text_input.value = result; |
|
let x = window.scrollX, y = window.scrollY; |
|
text_input.focus(); |
|
text_input.selectionStart = startPos + symbols[i].length; |
|
text_input.selectionEnd = startPos + symbols[i].length; |
|
text_input.blur(); |
|
window.scrollTo(x, y); |
|
return []; |
|
}}""") |
|
|
|
with gr.TabItem("Voice Conversion"): |
|
with gr.Tabs(): |
|
for i, (name, author, cover_path, speakers, vc_fn) in enumerate(models_vc): |
|
with gr.TabItem(f"model{i}"): |
|
cover_markdown = f"![cover](file/{cover_path})\n\n" if cover_path else "" |
|
gr.Markdown(f"## {name}\n\n" |
|
f"{cover_markdown}" |
|
f"model author: {author}") |
|
vc_input1 = gr.Dropdown(label="Original Speaker", choices=speakers, type="index", |
|
value=speakers[0]) |
|
vc_input2 = gr.Dropdown(label="Target Speaker", choices=speakers, type="index", |
|
value=speakers[min(len(speakers) - 1, 1)]) |
|
vc_input3 = gr.Audio(label="Input Audio (30s limitation)") |
|
vc_submit = gr.Button("Convert", variant="primary") |
|
vc_output1 = gr.Textbox(label="Output Message") |
|
vc_output2 = gr.Audio(label="Output Audio", elem_id=f"vc-audio{i}") |
|
download = gr.Button("Download Audio") |
|
download.click(None, [], [], _js=download_audio_js.format(audio_id=f"vc-audio{i}")) |
|
vc_submit.click(vc_fn, [vc_input1, vc_input2, vc_input3], [vc_output1, vc_output2]) |
|
with gr.TabItem("Soft Voice Conversion"): |
|
with gr.Tabs(): |
|
for i, (name, author, cover_path, speakers, soft_vc_fn) in enumerate(models_soft_vc): |
|
with gr.TabItem(f"model{i}"): |
|
cover_markdown = f"![cover](file/{cover_path})\n\n" if cover_path else "" |
|
gr.Markdown(f"## {name}\n\n" |
|
f"{cover_markdown}" |
|
f"model author: {author}") |
|
vc_input1 = gr.Dropdown(label="Target Speaker", choices=speakers, type="index", |
|
value=speakers[0]) |
|
source_tabs = gr.Tabs() |
|
with source_tabs: |
|
with gr.TabItem("microphone"): |
|
vc_input2 = gr.Audio(label="Input Audio (30s limitation)", source="microphone") |
|
with gr.TabItem("upload"): |
|
vc_input3 = gr.Audio(label="Input Audio (30s limitation)", source="upload") |
|
vc_submit = gr.Button("Convert", variant="primary") |
|
vc_output1 = gr.Textbox(label="Output Message") |
|
vc_output2 = gr.Audio(label="Output Audio", elem_id=f"svc-audio{i}") |
|
download = gr.Button("Download Audio") |
|
download.click(None, [], [], _js=download_audio_js.format(audio_id=f"svc-audio{i}")) |
|
|
|
source_tabs.set_event_trigger("change", None, [], [vc_input2, vc_input3], |
|
js="()=>[null,null]") |
|
vc_submit.click(soft_vc_fn, [vc_input1, vc_input2, vc_input3], |
|
[vc_output1, vc_output2]) |
|
gr.Markdown( |
|
"unofficial demo for \n\n" |
|
"- [https://github.com/CjangCjengh/MoeGoe](https://github.com/CjangCjengh/MoeGoe)\n" |
|
"- [https://github.com/Francis-Komizu/VITS](https://github.com/Francis-Komizu/VITS)\n" |
|
"- [https://github.com/luoyily/MoeTTS](https://github.com/luoyily/MoeTTS)\n" |
|
"- [https://github.com/Francis-Komizu/Sovits](https://github.com/Francis-Komizu/Sovits)" |
|
) |
|
app.queue(concurrency_count=3).launch(show_api=False, share=args.share) |
|
|