File size: 9,311 Bytes
564061f
 
 
 
 
 
 
 
 
 
 
 
77ffd2e
564061f
 
 
 
 
 
 
77ffd2e
564061f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dd1949
bc269e0
2dd1949
bc269e0
2dd1949
bc269e0
2dd1949
b7780f8
 
bc269e0
4361adb
 
 
0e373e4
fb63de0
0e373e4
4361adb
0e373e4
fb63de0
0e373e4
fb63de0
0e373e4
4361adb
fb63de0
 
564061f
 
 
 
 
 
 
 
 
 
 
 
b7780f8
564061f
 
 
 
 
 
bc269e0
2dd1949
564061f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import random
import uuid

import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusion3Pipeline, DPMSolverMultistepScheduler, AutoencoderKL
from huggingface_hub import snapshot_download

huggingface_token = os.getenv("HF_TOKEN")

model_path = snapshot_download(
    repo_id="stabilityai/stable-diffusion-3-medium", 
    revision="refs/pr/26",
    repo_type="model", 
    ignore_patterns=["*.md", "*..gitattributes"],
    local_dir="stable-diffusion-3-medium",
    token=huggingface_token,
    )

DESCRIPTION = """# Stable Diffusion 3"""
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = False
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
USE_TORCH_COMPILE = False
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

pipe = StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=torch.float16)
    

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


@spaces.GPU(enable_queue=True)
def generate(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 7,
    randomize_seed: bool = False,
    num_inference_steps=30,
    NUM_IMAGES_PER_PROMPT=1,
    use_resolution_binning: bool = True,
    progress=gr.Progress(track_tqdm=True),
):
    pipe.to(device)
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator().manual_seed(seed)
    
    #pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
    
    if not use_negative_prompt:
        negative_prompt = None  # type: ignore
    
    output = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=generator,
        num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
        output_type="pil",
    ).images

    return output


examples = [
    "taj mahal",
    
    "rose flower",
    
    "pond filled with lilies",
    
    "a snow capped mountainous landscape , river flowing through it, sun shining, some trees and shrubs",

    "taj mahal rose flower pond filled with lilies a snow capped mountainous landscape , river flowing through it, sun shining, some trees and shrubs",
    
    "a female character with long, flowing hair that appears to be made of ethereal, swirling patterns resembling the Northern Lights or Aurora Borealis. The background is dominated by deep blues and purples, creating a mysterious and dramatic atmosphere. The characters face is serene, with pale skin and striking features. She wears a dark-colored outfit with subtle patterns. The overall style of the artwork is reminiscent of fantasy or supernatural genres",
    "Digital art, portrait of an anthropomorphic roaring Tiger warrior with full armor, close up in the middle of a battle, behind him there is a banner with the text 'Open Source'.",
    "photo of a dog and a cat both standing on a red box, with a blue ball in the middle with a parrot standing on top of the ball. The box has the text 'SD3'",

    "selfie photo of a wizard with long beard and purple robes, he is apparently in the middle of Tokyo. Probably taken from a phone.",

    "A vibrant street wall covered in colorful graffiti, the centerpiece spells SD3 MEDIUM, in a storm of colors",

    "photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.",

    "anime art of a steampunk inventor in their workshop, surrounded by gears, gadgets, and steam. He is holding a blue potion and a red potion, one in each hand",

    "photo of picturesque scene of a road surrounded by lush green trees and shrubs. The road is wide and smooth, leading into the distance. On the right side of the road, there a blue sports car parked with the license plate spelling SD32B. The sky above is partly cloudy, suggesting a pleasant day. The trees have a mix of green and brown foliage. There are no people visible in the image. The overall composition is balanced, with the car serving as a focal point.",
    "photo of young man in a black suit, white shirt, and black tie. He has a neatly styled haircut and is looking directly at the camera with a neutral expression. The background consists of a textured wall with horizontal lines. The photograph is in black and white, emphasizing contrasts and shadows. The man appears to be in his late twenties or early thirties, with fair skin and short, dark hair.",
    "photo of a woman on the beach, shot from above. She is facing the sea, while wearing a white dress. She has long blonde hair",
]

css = '''
.gradio-container{max-width: 1000px !important}
h1{text-align:center}
'''
with gr.Blocks(css=css) as demo:
    with gr.Row():
        with gr.Column():
            gr.HTML(
            """
            <h1 style='text-align: center'>
            <a href ='https://huggingface.co/stabilityai/stable-diffusion-3-medium' target=_blank'>StabilityAI/Stable-Diffusion-V3-medium</a>
            </h1>
            """
        )
            gr.HTML(
                """
                <h3 style='text-align: center'>
                Find me here! 
                <a href='https://www.linkedin.com/in/jalam1001/' target='_blank'>LinedIn</a> | <a href='https://x.com/jalam1001' target='_blank'>Twitter</a> | <a href='https://www.facebook.com/javed.alam' target='_blank'>Facebook</a> | <a href='https://medium.com/@jalam1001' target='_blank'>Medium.com</a> 
                </h3>
                """
        )
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Gallery(label="Result", elem_id="gallery", show_label=False)
    with gr.Accordion("Advanced options", open=False):
        with gr.Row():
            use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                value = "deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
                visible=True,
            )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )

        steps = gr.Slider(
            label="Steps",
            minimum=0,
            maximum=60,
            step=1,
            value=50,
        )
        number_image = gr.Slider(
            label="Number of Image",
            minimum=1,
            maximum=4,
            step=1,
            value=1,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row(visible=True):
            width = gr.Slider(
                label="Width",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=10,
                step=0.1,
                value=7.0,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result],
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            randomize_seed,
            steps,
            number_image,
        ],
        outputs=[result],
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue().launch()