Jawad138 commited on
Commit
57c5cf0
·
1 Parent(s): 07f945f

update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -10
app.py CHANGED
@@ -10,6 +10,7 @@ from langchain.document_loaders import PyPDFLoader
10
  from langchain.document_loaders import TextLoader
11
  from langchain.document_loaders import Docx2txtLoader
12
  from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
 
13
  import os
14
  import tempfile
15
 
@@ -30,7 +31,7 @@ def conversation_chat(query, chain, history):
30
  history.append((query, result["answer"]))
31
  return result["answer"]
32
 
33
- def display_chat_history():
34
  reply_container = st.container()
35
  container = st.container()
36
 
@@ -48,8 +49,8 @@ def display_chat_history():
48
  message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs")
49
  message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji")
50
 
51
- def create_conversational_chain(vector_store, text_chunks):
52
- st.write("Text chunks lengths:", [len(chunk) for chunk in text_chunks]) # Add this line to print lengths
53
  replicate_api_token = "r8_AA3K1fhDykqLa5M74E5V0w5ss1z0P9S3foWJl" # Replace with your actual token
54
  os.environ["REPLICATE_API_TOKEN"] = replicate_api_token
55
 
@@ -97,14 +98,13 @@ def main():
97
  text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=100, length_function=len)
98
  text_chunks = text_splitter.split_documents(text)
99
 
100
- # Create embeddings
101
- embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'})
102
- vector_store = FAISS.from_documents(text_chunks, embedding=embeddings)
103
-
104
- # Create the chain object
105
- chain = create_conversational_chain(vector_store, text_chunks)
106
 
107
- display_chat_history()
 
 
 
 
108
 
109
  if __name__ == "__main__":
110
  main()
 
10
  from langchain.document_loaders import TextLoader
11
  from langchain.document_loaders import Docx2txtLoader
12
  from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
13
+ from dotenv import load_dotenv # Add this line for loading environment variables
14
  import os
15
  import tempfile
16
 
 
31
  history.append((query, result["answer"]))
32
  return result["answer"]
33
 
34
+ def display_chat_history(chain):
35
  reply_container = st.container()
36
  container = st.container()
37
 
 
49
  message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs")
50
  message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji")
51
 
52
+ def create_conversational_chain(vector_store):
53
+ load_dotenv()
54
  replicate_api_token = "r8_AA3K1fhDykqLa5M74E5V0w5ss1z0P9S3foWJl" # Replace with your actual token
55
  os.environ["REPLICATE_API_TOKEN"] = replicate_api_token
56
 
 
98
  text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=100, length_function=len)
99
  text_chunks = text_splitter.split_documents(text)
100
 
101
+ st.write("Text chunks lengths:", [len(chunk) for chunk in text_chunks])
 
 
 
 
 
102
 
103
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",
104
+ model_kwargs={'device': 'cpu'})
105
+ vector_store = FAISS.from_documents(text_chunks, embedding=embeddings)
106
+ chain = create_conversational_chain(vector_store)
107
+ display_chat_history(chain)
108
 
109
  if __name__ == "__main__":
110
  main()