Update app.py
Browse files
app.py
CHANGED
@@ -1,92 +1,93 @@
|
|
1 |
-
# %%
|
2 |
-
import torch
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
from datetime import datetime
|
6 |
-
from newsapi import NewsApiClient
|
7 |
-
from transformers import pipeline
|
8 |
-
import plotly.graph_objects as go
|
9 |
-
import gradio as gr
|
10 |
-
|
11 |
-
# Initialize News API client with your API key
|
12 |
-
newsapi = NewsApiClient(api_key='381793b3d6834758918838bca0cf52ee')
|
13 |
-
|
14 |
-
# Define sentiment analyzer using FinBERT
|
15 |
-
sentiment_analyzer = pipeline("text-classification", model="ProsusAI/finbert")
|
16 |
-
|
17 |
-
# Function to fetch news, analyze sentiment, and create an interactive Plotly plot
|
18 |
-
def analyze_news_sentiment(company_name):
|
19 |
-
# Fetch news articles related to the company
|
20 |
-
news = newsapi.get_everything(q=company_name, language='en', sort_by='publishedAt')
|
21 |
-
|
22 |
-
# Extract headlines from news articles
|
23 |
-
headlines = [article['title'] for article in news['articles']]
|
24 |
-
|
25 |
-
# Perform sentiment analysis on the headlines
|
26 |
-
result = sentiment_analyzer(headlines)
|
27 |
-
df = pd.DataFrame(result)
|
28 |
-
|
29 |
-
# Map labels to numeric values
|
30 |
-
label_mapping = {'positive': 1, 'neutral': 0, 'negative': -1}
|
31 |
-
df['sentiment'] = df['label'].map(label_mapping)
|
32 |
-
|
33 |
-
# Drop the 'label' column
|
34 |
-
df.drop(columns=['label'], inplace=True)
|
35 |
-
|
36 |
-
# Filter out neutral sentiment values
|
37 |
-
positive_sentiment = df[df['sentiment'] == 1]['sentiment']
|
38 |
-
negative_sentiment = df[df['sentiment'] == -1]['sentiment']
|
39 |
-
|
40 |
-
# Create the interactive Plotly histogram
|
41 |
-
fig = go.Figure()
|
42 |
-
|
43 |
-
# Add Positive sentiment histogram
|
44 |
-
fig.add_trace(go.Histogram(
|
45 |
-
x=positive_sentiment,
|
46 |
-
nbinsx=1,
|
47 |
-
name='Positive',
|
48 |
-
marker_color='purple',
|
49 |
-
opacity=0.75
|
50 |
-
))
|
51 |
-
|
52 |
-
# Add Negative sentiment histogram
|
53 |
-
fig.add_trace(go.Histogram(
|
54 |
-
x=negative_sentiment,
|
55 |
-
nbinsx=1,
|
56 |
-
name='Negative',
|
57 |
-
marker_color='skyblue',
|
58 |
-
opacity=0.75
|
59 |
-
))
|
60 |
-
|
61 |
-
# Update layout for better visualization
|
62 |
-
fig.update_layout(
|
63 |
-
title=f'Sentiment Distribution for {company_name}',
|
64 |
-
xaxis_title='Sentiment',
|
65 |
-
yaxis_title='Count',
|
66 |
-
barmode='overlay',
|
67 |
-
plot_bgcolor='black',
|
68 |
-
paper_bgcolor='black',
|
69 |
-
font=dict(color='white'),
|
70 |
-
xaxis=dict(tickvals=[-1, 1], ticktext=['Negative', 'Positive']),
|
71 |
-
bargap=0.2,
|
72 |
-
)
|
73 |
-
|
74 |
-
return fig
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
# %%
|
80 |
-
# Create a Gradio interface
|
81 |
-
interface = gr.Interface(
|
82 |
-
fn=analyze_news_sentiment, # Function to run
|
83 |
-
inputs=gr.Textbox(label="Enter Company Name"), # Input: company name
|
84 |
-
outputs=gr.Plot(label="Sentiment Distribution"), # Output: Interactive Plotly chart
|
85 |
-
title="Sentiment Analysis on News Headlines",
|
86 |
-
description="Enter a company name to analyze the sentiment of the latest news related to that company."
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
1 |
+
# %%
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from datetime import datetime
|
6 |
+
from newsapi import NewsApiClient
|
7 |
+
from transformers import pipeline
|
8 |
+
import plotly.graph_objects as go
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
# Initialize News API client with your API key
|
12 |
+
newsapi = NewsApiClient(api_key='381793b3d6834758918838bca0cf52ee')
|
13 |
+
|
14 |
+
# Define sentiment analyzer using FinBERT
|
15 |
+
sentiment_analyzer = pipeline("text-classification", model="ProsusAI/finbert")
|
16 |
+
|
17 |
+
# Function to fetch news, analyze sentiment, and create an interactive Plotly plot
|
18 |
+
def analyze_news_sentiment(company_name):
|
19 |
+
# Fetch news articles related to the company
|
20 |
+
news = newsapi.get_everything(q=company_name, language='en', sort_by='publishedAt')
|
21 |
+
|
22 |
+
# Extract headlines from news articles
|
23 |
+
headlines = [article['title'] for article in news['articles']]
|
24 |
+
|
25 |
+
# Perform sentiment analysis on the headlines
|
26 |
+
result = sentiment_analyzer(headlines)
|
27 |
+
df = pd.DataFrame(result)
|
28 |
+
|
29 |
+
# Map labels to numeric values
|
30 |
+
label_mapping = {'positive': 1, 'neutral': 0, 'negative': -1}
|
31 |
+
df['sentiment'] = df['label'].map(label_mapping)
|
32 |
+
|
33 |
+
# Drop the 'label' column
|
34 |
+
df.drop(columns=['label'], inplace=True)
|
35 |
+
|
36 |
+
# Filter out neutral sentiment values
|
37 |
+
positive_sentiment = df[df['sentiment'] == 1]['sentiment']
|
38 |
+
negative_sentiment = df[df['sentiment'] == -1]['sentiment']
|
39 |
+
|
40 |
+
# Create the interactive Plotly histogram
|
41 |
+
fig = go.Figure()
|
42 |
+
|
43 |
+
# Add Positive sentiment histogram
|
44 |
+
fig.add_trace(go.Histogram(
|
45 |
+
x=positive_sentiment,
|
46 |
+
nbinsx=1,
|
47 |
+
name='Positive',
|
48 |
+
marker_color='purple',
|
49 |
+
opacity=0.75
|
50 |
+
))
|
51 |
+
|
52 |
+
# Add Negative sentiment histogram
|
53 |
+
fig.add_trace(go.Histogram(
|
54 |
+
x=negative_sentiment,
|
55 |
+
nbinsx=1,
|
56 |
+
name='Negative',
|
57 |
+
marker_color='skyblue',
|
58 |
+
opacity=0.75
|
59 |
+
))
|
60 |
+
|
61 |
+
# Update layout for better visualization
|
62 |
+
fig.update_layout(
|
63 |
+
title=f'Sentiment Distribution for {company_name}',
|
64 |
+
xaxis_title='Sentiment',
|
65 |
+
yaxis_title='Count',
|
66 |
+
barmode='overlay',
|
67 |
+
plot_bgcolor='black',
|
68 |
+
paper_bgcolor='black',
|
69 |
+
font=dict(color='white'),
|
70 |
+
xaxis=dict(tickvals=[-1, 1], ticktext=['Negative', 'Positive']),
|
71 |
+
bargap=0.2,
|
72 |
+
)
|
73 |
+
|
74 |
+
return fig
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
# %%
|
80 |
+
# Create a Gradio interface
|
81 |
+
interface = gr.Interface(
|
82 |
+
fn=analyze_news_sentiment, # Function to run
|
83 |
+
inputs=gr.Textbox(label="Enter Company Name"), # Input: company name
|
84 |
+
outputs=gr.Plot(label="Sentiment Distribution"), # Output: Interactive Plotly chart
|
85 |
+
title="Sentiment Analysis on News Headlines",
|
86 |
+
description="Enter a company name to analyze the sentiment of the latest news related to that company.",
|
87 |
+
theme="dark" # Optional theme setting for Gradio
|
88 |
+
)
|
89 |
+
|
90 |
+
# Launch the Gradio app
|
91 |
+
interface.launch()
|
92 |
+
|
93 |
+
|