JeffYang52415 commited on
Commit
da35c69
·
unverified ·
1 Parent(s): 2822485

feat: mmlu parser

Browse files
Files changed (1) hide show
  1. llmdataparser/mmlu_parser.py +81 -0
llmdataparser/mmlu_parser.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from typing import Any
3
+
4
+ from llmdataparser.base_parser import HuggingFaceDatasetParser, ParseEntry
5
+ from llmdataparser.prompts import MMLU_SYSTEM_PROMPT
6
+
7
+
8
+ @dataclass(frozen=True)
9
+ class MMLUParseEntry(ParseEntry):
10
+ """
11
+ Custom entry class for MMLU, with fields specific to this dataset parser.
12
+ """
13
+
14
+ prompt: str
15
+ answer_letter: str
16
+
17
+ @classmethod
18
+ def create(cls, prompt: str, answer_letter: str) -> "MMLUParseEntry":
19
+ if answer_letter not in {"A", "B", "C", "D"}:
20
+ raise ValueError(
21
+ f"Invalid answer_letter '{answer_letter}'; must be one of 'A', 'B', 'C', 'D'."
22
+ )
23
+ return cls(prompt=prompt, answer_letter=answer_letter)
24
+
25
+
26
+ class MMLUDatasetParser(HuggingFaceDatasetParser[MMLUParseEntry]):
27
+ _data_source = "cais/mmlu"
28
+
29
+ def __init__(self, system_prompt: str = MMLU_SYSTEM_PROMPT):
30
+ super().__init__() # Properly initialize the base class
31
+ self.parsed_data: list[MMLUParseEntry] = []
32
+ self.task_names: list[str] = []
33
+ self.subject_list: set[str] = set()
34
+ self.system_prompt: str = system_prompt
35
+ super().__init__()
36
+
37
+ def parse(self, split_names: str | list[str] | None = None, **kwargs: Any) -> None:
38
+ self.parsed_data.clear()
39
+ if self.raw_data is None:
40
+ raise ValueError("No data loaded. Please load the dataset first.")
41
+
42
+ if split_names is None:
43
+ split_names = self.task_names
44
+ elif isinstance(split_names, str):
45
+ split_names = [split_names]
46
+
47
+ for split_name in split_names:
48
+ if split_name not in self.task_names:
49
+ raise ValueError(f"Task '{split_name}' not found in the dataset.")
50
+
51
+ dataset_split = self.raw_data[split_name]
52
+ for index, entry in enumerate(dataset_split, start=1):
53
+ data_entry = self.process_entry(entry, **kwargs)
54
+ self._parsed_data.append(data_entry)
55
+ self.subject_list.add(entry.get("subject", "Unknown"))
56
+ print(f"Parsed {index} data points from task '{split_name}'.")
57
+
58
+ print(
59
+ f"Number of subjects: {len(self.subject_list)}. "
60
+ "For more details, please check the `self.subject_list` attribute."
61
+ )
62
+
63
+ def process_entry(self, row: dict[str, Any], **kwargs) -> MMLUParseEntry:
64
+ """
65
+ Generate a prompt and expected answer from the given row.
66
+
67
+ Args:
68
+ row (dict[str, Any]): A data point to be formatted.
69
+
70
+ Returns:
71
+ MMLUParseEntry: The formatted entry object.
72
+ """
73
+ choices = "\n".join(
74
+ f"{chr(65 + i)}. {choice}" for i, choice in enumerate(row["choices"])
75
+ )
76
+ prompt = (
77
+ f"{self.system_prompt}\nQuestion: {row['question']}\n{choices}\nAnswer:"
78
+ )
79
+ answer_letter = chr(65 + row["answer"]) # Convert index to 'A', 'B', 'C', 'D'
80
+
81
+ return MMLUParseEntry.create(prompt, answer_letter)