File size: 1,213 Bytes
031ac83
 
f9522cf
4e6140d
 
4c97910
 
88a3c01
4c97910
 
 
 
 
79f3d28
4c97910
88a3c01
 
4c97910
 
 
79f3d28
ffc3a3a
 
c2ccf60
4c97910
ffc3a3a
79f3d28
 
 
ffc3a3a
 
 
 
 
 
 
ba1e2db
 
 
 
 
 
4c97910
79f3d28
 
 
 
 
c504867
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from sklearn.model_selection import train_test_split
import numpy as np

from neural_network.opts import activation
from neural_network.backprop import bp


def init(X: np.array, hidden_size: int) -> dict:
    """
    returns a dictionary containing randomly initialized
    weights and biases to start off the neural_network
    """
    return {
        "w1": np.random.randn(X.shape[1], hidden_size),
        "b1": np.zeros((1, hidden_size)),
        "w2": np.random.randn(hidden_size, 3),  # Output layer has 3 neurons
        "b2": np.zeros((1, 3)),  # Output layer has 3 neurons
    }


def main( 
    X: np.array,
    y: np.array,
    args,
) -> None:
    wb = init(X, args["hidden_size"])
    act = activation[args["activation_func"]]
    args["activation_func"] = act["main"]
    args["func_prime"] = act["prime"]
    X_train, X_test, y_train, y_test = train_test_split(
        X,
        y,
        test_size=0.2,
        random_state=8675309,
    )

    model = bp(
        X_train=X_train,
        y_train=y_train,
        wb=wb,
        args=args,
    )

    # evaluate the model and return final results
    model.eval(
        X_test=X_test,
        y_test=y_test,
    )
    return model.to_dict()