Spaces:
Sleeping
Sleeping
File size: 1,211 Bytes
f04bbb4 902aba3 f04bbb4 1936952 137390c 1936952 f04bbb4 0411a47 f04bbb4 e56bb0b 0411a47 f04bbb4 0411a47 f04bbb4 902aba3 e56bb0b 902aba3 932b3cb 902aba3 dca0a99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
# Data Mining from scratch backend
Currently living [here](https://data-mining-from-scratch-backend.onrender.com/) <br>
Since the API is hosted using render's free tier, <br>
every time 15 minutes goes by it gets shut down. <br>
If a request is made while it is shut down, the web service <br>
has to spin back up again which takes roughly 1 minute <br>
### Example Useage
```python
import requests
import json
request_params = {
"arguments": {
"epochs": 100,
"activation_func": "tanh",
"hidden_size": 8,
"learning_rate": 0.01
}
}
headers = {
"Content-Type": "application/json",
}
r = requests.post(
"https://data-mining-from-scratch-backend.onrender.com/neural-network",
headers=headers,
data=json.dumps(request_params),
)
model_data = r.json()
print(model_data)
```
### Parameter Options
- End Points: <br>
-`"neural-network"` <br>
- `"kmeans-clustering"` <br> -`"kmedoid-clustering"` <br> -`"heirarchical-clustering"` <br>
- Algorithm Specific Arguments
- neural-network
- epochs: any integer
- activation_func: tanh, sigmoid, or relu
- hidden_size: must be an even integer
- learning_rate: any floating point number
|