File size: 877 Bytes
714bc51
2c9d2bf
31806c5
6377159
31806c5
 
f31d9cf
e571d8c
f31d9cf
 
e571d8c
31806c5
28d5b3d
24f2542
f38f95f
33e7a34
f31d9cf
 
6377159
deecb43
f31d9cf
 
 
 
 
 
 
 
 
 
 
 
f04bbb4
3cab2dd
 
 
f31d9cf
3cab2dd
6377159
3cab2dd
c2ccf60
31806c5
3563daa
a18c74f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from flask import Flask, request, jsonify, render_template
from flask_cors import CORS

from dataset.iris import iris
from opts import options

# using the iris data set for every algorithm
# just for simplicity sake
X, y = iris()

app = Flask(__name__)

CORS(app, origins="*")


@app.route("/neural-network", methods=["POST"])
def neural_network():
    algorithm = options["neural-network"]
    args = request.json["arguments"]

    result = algorithm(
        X=X,
        y=y,
        args=args,
    )
    return jsonify(result)


@app.route("/kmeans-clustering", methods=["POST"])
def kmeans():
    algorithm = options["kmeans-clustering"]
    args = request.json["arguments"]

    result = algorithm(
        X=X,
        y=y,
        clusterer="kmeans-clustering",
        args=args,
    )
    return jsonify(result)


if __name__ == "__main__":
    app.run(debug=False)