Jensen-holm's picture
fixing train test split issue with iris dataset
ffc3a3a
raw
history blame
509 Bytes
from sklearn.datasets import load_iris
from sklearn.preprocessing import OneHotEncoder, StandardScaler
import numpy as np
def iris() -> tuple[np.array]:
"""
returns a tuple of numpy arrays containing the
iris dataset split into training and testing sets
after being normalized and one-hot encoded
"""
iris = load_iris()
scaler = StandardScaler()
x = scaler.fit_transform(iris.data)
y = OneHotEncoder().fit_transform(iris.target.reshape(-1, 1)).toarray()
return x, y