Numpy-Neuron / nn /train.py
Jensen-holm's picture
moving on to testing other datasets!
9e506b7
raw
history blame
3 kB
from sklearn.model_selection import train_test_split
from sklearn.metrics import log_loss, accuracy_score, f1_score
from typing import Callable
from nn.nn import NN
import numpy as np
def init_weights_biases(nn: NN):
# np.random.seed(0)
bh = np.zeros((1, nn.hidden_size))
bo = np.zeros((1, nn.output_size))
wh = np.random.randn(nn.input_size, nn.hidden_size) * \
np.sqrt(2 / nn.input_size)
wo = np.random.randn(nn.hidden_size, nn.output_size) * \
np.sqrt(2 / nn.hidden_size)
return wh, wo, bh, bo
def train(nn: NN) -> dict:
wh, wo, bh, bo = init_weights_biases(nn=nn)
X_train, X_test, y_train, y_test = train_test_split(
nn.X.to_numpy(),
nn.y_dummy.to_numpy(),
test_size=nn.test_size,
# random_state=0,
)
ce: float = 0.0
loss_hist: list[float] = []
for _ in range(nn.epochs):
# compute hidden output
hidden_output = compute_node(
data=X_train,
weights=wh,
biases=bh,
func=nn.func,
)
# compute output layer
y_hat = compute_node(
data=hidden_output,
weights=wo,
biases=bo,
func=nn.func,
)
# compute error & store it
error = y_hat - y_train
mse = mean_squared_error(y=y_train, y_hat=y_hat)
loss_hist.append(mse)
# compute derivatives of weights & biases
# update weights & biases using gradient descent after
# computing derivatives.
dwo = nn.learning_rate * output_weight_prime(hidden_output, error)
# Use NumPy to sum along the first axis (axis=0)
# and then reshape to match the shape of bo
dbo = nn.learning_rate * np.sum(output_bias_prime(error), axis=0)
dhidden = np.dot(error, wo.T) * nn.func_prime(hidden_output)
dwh = nn.learning_rate * hidden_weight_prime(X_train, dhidden)
dbh = nn.learning_rate * hidden_bias_prime(dhidden)
wh -= dwh
wo -= dwo
bh -= dbh
bo -= dbo
# compute final predictions on data not seen
hidden_output_test = compute_node(
data=X_test,
weights=wh,
biases=bh,
func=nn.func,
)
y_hat = compute_node(
data=hidden_output_test,
weights=wo,
biases=bo,
func=nn.func,
)
return {
"log loss": log_loss(y_true=y_test, y_pred=y_hat)
}
def compute_node(data: np.array, weights: np.array, biases: np.array, func: Callable) -> np.array:
return func(np.dot(data, weights) + biases)
def mean_squared_error(y: np.array, y_hat: np.array) -> np.array:
return np.mean((y - y_hat) ** 2)
def hidden_bias_prime(error):
return np.sum(error, axis=0)
def output_bias_prime(error):
return np.sum(error, axis=0)
def hidden_weight_prime(data, error):
return np.dot(data.T, error)
def output_weight_prime(hidden_output, error):
return np.dot(hidden_output.T, error)