Jensen-holm commited on
Commit
0e83192
·
1 Parent(s): d23d936

getting rid of some more problematic type hints

Browse files
cluster/clusterer.py CHANGED
@@ -1,8 +1,6 @@
1
  from dataclasses import dataclass
2
  from typing import Callable
3
 
4
- import numpy as np
5
-
6
 
7
  @dataclass
8
  class Clusterer:
@@ -11,8 +9,8 @@ class Clusterer:
11
 
12
  def eval(
13
  self,
14
- pred_labels: np.array,
15
- true_labels: np.array,
16
  ) -> None:
17
  ...
18
 
 
1
  from dataclasses import dataclass
2
  from typing import Callable
3
 
 
 
4
 
5
  @dataclass
6
  class Clusterer:
 
9
 
10
  def eval(
11
  self,
12
+ pred_labels,
13
+ true_labels,
14
  ) -> None:
15
  ...
16
 
cluster/distance.py CHANGED
@@ -7,7 +7,7 @@ import numpy as np
7
  def euclidean(
8
  point: np.array,
9
  data: np.array,
10
- ) -> np.array:
11
  """
12
  Computed the euclidean distance
13
  between a point and the rest
 
7
  def euclidean(
8
  point: np.array,
9
  data: np.array,
10
+ ):
11
  """
12
  Computed the euclidean distance
13
  between a point and the rest
cluster/opts.py CHANGED
@@ -3,7 +3,7 @@ from cluster.kmedoids import Kmedoids
3
  from cluster.kmeans import Kmeans
4
 
5
 
6
- clustering_methods: dict[str, Clusterer] = {
7
  "kmeans-clustering": Kmeans,
8
  "kmedoids-clustering": Kmedoids,
9
  }
 
3
  from cluster.kmeans import Kmeans
4
 
5
 
6
+ clustering_methods = {
7
  "kmeans-clustering": Kmeans,
8
  "kmedoids-clustering": Kmedoids,
9
  }
cluster/plot.py CHANGED
@@ -4,13 +4,12 @@ import numpy as np
4
  import matplotlib
5
  import matplotlib.pyplot as plt
6
  import seaborn as sns
7
- from cluster.clusterer import Clusterer
8
 
9
 
10
  matplotlib.use("Agg")
11
  sns.set()
12
 
13
- def plot(clusterer: Clusterer, X: np.array) -> None:
14
  cluster_data = clusterer.to_dict(X)["clusters"]
15
  # plot the clusters and data points
16
  fig, ax = plt.subplots(figsize=(8, 6))
@@ -36,7 +35,7 @@ def plot(clusterer: Clusterer, X: np.array) -> None:
36
  clusterer.plot = plt_bytes(fig)
37
 
38
 
39
- def plt_bytes(fig) -> str:
40
  buf = io.BytesIO()
41
  fig.savefig(buf, format="png")
42
  plt.close(fig)
 
4
  import matplotlib
5
  import matplotlib.pyplot as plt
6
  import seaborn as sns
 
7
 
8
 
9
  matplotlib.use("Agg")
10
  sns.set()
11
 
12
+ def plot(clusterer, X) -> None:
13
  cluster_data = clusterer.to_dict(X)["clusters"]
14
  # plot the clusters and data points
15
  fig, ax = plt.subplots(figsize=(8, 6))
 
35
  clusterer.plot = plt_bytes(fig)
36
 
37
 
38
+ def plt_bytes(fig):
39
  buf = io.BytesIO()
40
  fig.savefig(buf, format="png")
41
  plt.close(fig)
neural_network/main.py CHANGED
@@ -6,7 +6,7 @@ from neural_network.backprop import bp
6
  from neural_network.plot import plot
7
 
8
 
9
- def init(X: np.array, hidden_size: int) -> dict:
10
  """
11
  returns a dictionary containing randomly initialized
12
  weights and biases to start off the neural_network
 
6
  from neural_network.plot import plot
7
 
8
 
9
+ def init(X: np.array, hidden_size: int):
10
  """
11
  returns a dictionary containing randomly initialized
12
  weights and biases to start off the neural_network
neural_network/plot.py CHANGED
@@ -4,11 +4,10 @@ import io
4
  import seaborn as sns
5
  import matplotlib
6
  import matplotlib.pyplot as plt
7
- from neural_network.neural_network import NeuralNetwork
8
 
9
  matplotlib.use("Agg")
10
 
11
- def plot(model: NeuralNetwork) -> None:
12
  sns.set()
13
  fig, ax = plt.subplots()
14
  sns.lineplot(
 
4
  import seaborn as sns
5
  import matplotlib
6
  import matplotlib.pyplot as plt
 
7
 
8
  matplotlib.use("Agg")
9
 
10
+ def plot(model) -> None:
11
  sns.set()
12
  fig, ax = plt.subplots()
13
  sns.lineplot(