Spaces:
Sleeping
Sleeping
Jensen-holm
commited on
Commit
·
e11b37a
1
Parent(s):
28a7ac6
features added:
Browse files- batch size argument
- new example that is more performant and better actually
- README.md +5 -30
- app.py +54 -64
- nn/__init__.py +3 -3
- nn/nn.py +36 -22
- vis.py +3 -7
- warning.md +18 -0
README.md
CHANGED
@@ -10,35 +10,10 @@ pinned: false
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
##
|
14 |
|
15 |
-
The
|
16 |
-
|
17 |
-
to train a neural network on the [MNIST](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) dataset of 8x8 pixel images.
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
repository and run it locally.
|
22 |
-
|
23 |
-
In order to get a decent classification score on the validation set of the MNIST data (hard coded to 20%), you will have to
|
24 |
-
do somewhere between 15,000 epochs and 50,000 epochs with a learning rate around 0.001, and a hidden layer size
|
25 |
-
over 10. (roughly the example that I have provided). Running this many epochs with a hidden layer of that size
|
26 |
-
is pretty expensive on 2 cpu cores that this space has. So if you are actually curious, you might want to clone
|
27 |
-
this and run it locally because it will be much much faster.
|
28 |
-
|
29 |
-
`git clone https://huggingface.co/spaces/Jensen-holm/Numpy-Neuron`
|
30 |
-
|
31 |
-
After cloning, you will have to install the dependencies from requirements.txt into your environment. (venv reccommended)
|
32 |
-
|
33 |
-
`pip3 install -r requirements.txt`
|
34 |
-
|
35 |
-
Then, you can run the application on local host with the following command.
|
36 |
-
|
37 |
-
`python3 app.py`
|
38 |
-
|
39 |
-
|
40 |
-
## Development
|
41 |
-
|
42 |
-
In order to push from this GitHub repo to the hugging face space:
|
43 |
-
|
44 |
-
`git push --force space main`
|
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
## Dev Notes
|
14 |
|
15 |
+
The remote added to this repo so that it runs on hugging face spaces
|
16 |
+
`git remote add space [email protected]:spaces/Jensen-holm/Numpy-Neuron`
|
|
|
17 |
|
18 |
+
The command to force push to that space
|
19 |
+
`git push --force space main`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -13,10 +13,13 @@ from vis import ( # classification visualization funcitons
|
|
13 |
)
|
14 |
|
15 |
|
|
|
|
|
|
|
16 |
def _preprocess_digits(
|
17 |
seed: int,
|
18 |
-
) -> tuple[np.ndarray,
|
19 |
-
digits = datasets.load_digits()
|
20 |
n_samples = len(digits.images)
|
21 |
data = digits.images.reshape((n_samples, -1))
|
22 |
y = OneHotEncoder().fit_transform(digits.target.reshape(-1, 1)).toarray()
|
@@ -33,36 +36,43 @@ X_train, X_test, y_train, y_test = _preprocess_digits(seed=1)
|
|
33 |
|
34 |
|
35 |
def classification(
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
43 |
) -> tuple[gr.Plot, gr.Plot, gr.Label]:
|
44 |
-
assert
|
45 |
-
assert
|
46 |
-
assert
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
hidden_size=
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
56 |
output_size=10, # digits 0-9
|
57 |
-
seed=
|
58 |
)
|
59 |
-
classifier.train(X_train=X_train, y_train=y_train)
|
60 |
|
61 |
-
|
|
|
|
|
62 |
hits_and_misses_fig = hits_and_misses(y_pred=pred, y_true=y_test)
|
63 |
loss_fig = loss_history_plt(
|
64 |
-
loss_history=
|
65 |
-
loss_fn_name=
|
66 |
)
|
67 |
|
68 |
label_dict = make_confidence_label(y_pred=pred, y_test=y_test)
|
@@ -74,38 +84,13 @@ def classification(
|
|
74 |
|
75 |
|
76 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
77 |
with gr.Blocks() as interface:
|
78 |
gr.Markdown("# Numpy Neuron")
|
79 |
-
gr.Markdown(
|
80 |
-
"""
|
81 |
-
## What is this? <br>
|
82 |
-
|
83 |
-
The Backpropagation Playground is a GUI built around a neural network framework that I have built from scratch
|
84 |
-
in [numpy](https://numpy.org/). In this GUI, you can test different hyper parameters that will be fed to this framework and used
|
85 |
-
to train a neural network on the [MNIST](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) dataset of 8x8 pixel images.
|
86 |
-
|
87 |
-
## ⚠️ PLEASE READ ⚠️
|
88 |
-
This application is impossibly slow on the HuggingFace CPU instance that it is running on. It is advised to clone the
|
89 |
-
repository and run it locally.
|
90 |
-
|
91 |
-
In order to get a decent classification score on the validation set of the MNIST data (hard coded to 20%), you will have to
|
92 |
-
do somewhere between 15,000 epochs and 50,000 epochs with a learning rate around 0.001, and a hidden layer size
|
93 |
-
over 10. (roughly the example that I have provided). Running this many epochs with a hidden layer of that size
|
94 |
-
is pretty expensive on 2 cpu cores that this space has. So if you are actually curious, you might want to clone
|
95 |
-
this and run it locally because it will be much much faster.
|
96 |
-
|
97 |
-
`git clone https://huggingface.co/spaces/Jensen-holm/Numpy-Neuron`
|
98 |
-
|
99 |
-
After cloning, you will have to install the dependencies from requirements.txt into your environment. (venv reccommended)
|
100 |
-
|
101 |
-
`pip3 install -r requirements.txt`
|
102 |
-
|
103 |
-
Then, you can run the application on localhost with the following command.
|
104 |
-
|
105 |
-
`python3 app.py`
|
106 |
-
|
107 |
-
"""
|
108 |
-
)
|
109 |
|
110 |
with gr.Tab("Classification"):
|
111 |
with gr.Row():
|
@@ -120,11 +105,12 @@ if __name__ == "__main__":
|
|
120 |
with gr.Column():
|
121 |
numeric_inputs = [
|
122 |
gr.Slider(
|
123 |
-
minimum=100, maximum=
|
124 |
),
|
125 |
gr.Slider(
|
126 |
minimum=2, maximum=64, step=2, label="Hidden Network Size"
|
127 |
),
|
|
|
128 |
gr.Number(minimum=0.00001, maximum=1.5, label="Learning Rate"),
|
129 |
]
|
130 |
|
@@ -132,9 +118,12 @@ if __name__ == "__main__":
|
|
132 |
fn_inputs = [
|
133 |
gr.Dropdown(
|
134 |
choices=["Relu", "Sigmoid", "TanH"],
|
135 |
-
label="Hidden Layer Activation",
|
|
|
|
|
|
|
|
|
136 |
),
|
137 |
-
gr.Dropdown(choices=["SoftMax", "Sigmoid"], label="Output Activation"),
|
138 |
gr.Dropdown(
|
139 |
choices=["CrossEntropy", "CrossEntropyWithLogitsLoss"],
|
140 |
label="Loss Function",
|
@@ -151,12 +140,13 @@ if __name__ == "__main__":
|
|
151 |
[
|
152 |
2,
|
153 |
"Relu",
|
154 |
-
"
|
155 |
"CrossEntropyWithLogitsLoss",
|
156 |
-
|
157 |
-
|
158 |
-
0
|
159 |
-
|
|
|
160 |
],
|
161 |
inputs=inputs,
|
162 |
)
|
|
|
13 |
)
|
14 |
|
15 |
|
16 |
+
type number = float | int
|
17 |
+
|
18 |
+
|
19 |
def _preprocess_digits(
|
20 |
seed: int,
|
21 |
+
) -> tuple[np.ndarray, ...]:
|
22 |
+
digits = datasets.load_digits(as_frame=False)
|
23 |
n_samples = len(digits.images)
|
24 |
data = digits.images.reshape((n_samples, -1))
|
25 |
y = OneHotEncoder().fit_transform(digits.target.reshape(-1, 1)).toarray()
|
|
|
36 |
|
37 |
|
38 |
def classification(
|
39 |
+
seed: int,
|
40 |
+
hidden_layer_activation_fn: str,
|
41 |
+
output_layer_activation_fn: str,
|
42 |
+
loss_fn_str: str,
|
43 |
+
epochs: int,
|
44 |
+
hidden_size: int,
|
45 |
+
batch_size: number,
|
46 |
+
learning_rate: number,
|
47 |
) -> tuple[gr.Plot, gr.Plot, gr.Label]:
|
48 |
+
assert hidden_layer_activation_fn in nn.ACTIVATIONS
|
49 |
+
assert output_layer_activation_fn in nn.ACTIVATIONS
|
50 |
+
assert loss_fn_str in nn.LOSSES
|
51 |
+
|
52 |
+
loss_fn: nn.Loss = nn.LOSSES[loss_fn_str]
|
53 |
+
h_act_fn: nn.Activation = nn.ACTIVATIONS[hidden_layer_activation_fn]
|
54 |
+
o_act_fn: nn.Activation = nn.ACTIVATIONS[output_layer_activation_fn]
|
55 |
+
|
56 |
+
nn_classifier = nn.NN(
|
57 |
+
epochs=epochs,
|
58 |
+
hidden_size=hidden_size,
|
59 |
+
batch_size=batch_size,
|
60 |
+
learning_rate=learning_rate,
|
61 |
+
loss_fn=loss_fn,
|
62 |
+
hidden_activation_fn=h_act_fn,
|
63 |
+
output_activation_fn=o_act_fn,
|
64 |
+
input_size=64, # 8x8 pixel grid images
|
65 |
output_size=10, # digits 0-9
|
66 |
+
seed=seed,
|
67 |
)
|
|
|
68 |
|
69 |
+
nn_classifier.train(X_train=X_train, y_train=y_train)
|
70 |
+
|
71 |
+
pred = nn_classifier.predict(X_test=X_test)
|
72 |
hits_and_misses_fig = hits_and_misses(y_pred=pred, y_true=y_test)
|
73 |
loss_fig = loss_history_plt(
|
74 |
+
loss_history=nn_classifier._loss_history,
|
75 |
+
loss_fn_name=nn_classifier.loss_fn.__class__.__name__,
|
76 |
)
|
77 |
|
78 |
label_dict = make_confidence_label(y_pred=pred, y_test=y_test)
|
|
|
84 |
|
85 |
|
86 |
if __name__ == "__main__":
|
87 |
+
def _open_warning() -> str:
|
88 |
+
with open("warning.md", "r") as f:
|
89 |
+
return f.read()
|
90 |
+
|
91 |
with gr.Blocks() as interface:
|
92 |
gr.Markdown("# Numpy Neuron")
|
93 |
+
gr.Markdown(_open_warning())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
with gr.Tab("Classification"):
|
96 |
with gr.Row():
|
|
|
105 |
with gr.Column():
|
106 |
numeric_inputs = [
|
107 |
gr.Slider(
|
108 |
+
minimum=100, maximum=10_000, step=50, label="Epochs"
|
109 |
),
|
110 |
gr.Slider(
|
111 |
minimum=2, maximum=64, step=2, label="Hidden Network Size"
|
112 |
),
|
113 |
+
gr.Slider(minimum=0.1, maximum=1, step=0.1, label="Batch Size"),
|
114 |
gr.Number(minimum=0.00001, maximum=1.5, label="Learning Rate"),
|
115 |
]
|
116 |
|
|
|
118 |
fn_inputs = [
|
119 |
gr.Dropdown(
|
120 |
choices=["Relu", "Sigmoid", "TanH"],
|
121 |
+
label="Hidden Layer Activation Function",
|
122 |
+
),
|
123 |
+
gr.Dropdown(
|
124 |
+
choices=["SoftMax", "Sigmoid"],
|
125 |
+
label="Output Activation Function",
|
126 |
),
|
|
|
127 |
gr.Dropdown(
|
128 |
choices=["CrossEntropy", "CrossEntropyWithLogitsLoss"],
|
129 |
label="Loss Function",
|
|
|
140 |
[
|
141 |
2,
|
142 |
"Relu",
|
143 |
+
"Sigmoid",
|
144 |
"CrossEntropyWithLogitsLoss",
|
145 |
+
2_000,
|
146 |
+
16,
|
147 |
+
1.0,
|
148 |
+
0.01,
|
149 |
+
],
|
150 |
],
|
151 |
inputs=inputs,
|
152 |
)
|
nn/__init__.py
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
-
from nn.
|
2 |
-
from nn.activation import
|
3 |
-
from nn.
|
|
|
1 |
+
from nn.loss import *
|
2 |
+
from nn.activation import *
|
3 |
+
from nn.nn import *
|
nn/nn.py
CHANGED
@@ -15,9 +15,10 @@ class NN:
|
|
15 |
learning_rate: float
|
16 |
hidden_size: int
|
17 |
input_size: int
|
|
|
18 |
output_size: int
|
19 |
hidden_activation_fn: Activation
|
20 |
-
|
21 |
loss_fn: Loss
|
22 |
seed: int
|
23 |
|
@@ -26,19 +27,26 @@ class NN:
|
|
26 |
_wh: np.ndarray = field(default_factory=lambda: np.ndarray([]), init=False)
|
27 |
_bo: np.ndarray = field(default_factory=lambda: np.ndarray([]), init=False)
|
28 |
_bh: np.ndarray = field(default_factory=lambda: np.ndarray([]), init=False)
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
38 |
|
39 |
def __post_init__(self) -> None:
|
|
|
40 |
self._init_weights_and_biases()
|
41 |
|
|
|
|
|
|
|
|
|
42 |
def _init_weights_and_biases(self) -> None:
|
43 |
"""
|
44 |
NN._init_weights_and_biases(): Should only be ran once, right before training loop
|
@@ -64,7 +72,6 @@ class NN:
|
|
64 |
* np.sqrt(2 / self.hidden_size),
|
65 |
dtype=DTYPE,
|
66 |
)
|
67 |
-
return
|
68 |
|
69 |
# def _forward(self, X_train: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
|
70 |
# # Determine the activation function for the hidden layer
|
@@ -116,16 +123,16 @@ class NN:
|
|
116 |
bo_prime = np.sum(error_output, axis=0, keepdims=True) * self.learning_rate
|
117 |
|
118 |
# Propagate the error back to the hidden layer
|
119 |
-
error_hidden = np.dot(
|
120 |
-
|
121 |
-
)
|
122 |
|
123 |
# Calculate gradients for hidden layer weights and biases
|
124 |
wh_prime = np.dot(X_train.T, error_hidden) * self.learning_rate
|
125 |
bh_prime = np.sum(error_hidden, axis=0, keepdims=True) * self.learning_rate
|
126 |
|
127 |
# Gradient clipping to prevent overflow
|
128 |
-
max_norm = 1.0 #
|
129 |
wo_prime = np.clip(wo_prime, -max_norm, max_norm)
|
130 |
bo_prime = np.clip(bo_prime, -max_norm, max_norm)
|
131 |
wh_prime = np.clip(wh_prime, -max_norm, max_norm)
|
@@ -137,17 +144,24 @@ class NN:
|
|
137 |
self._bo -= bo_prime
|
138 |
self._bh -= bh_prime
|
139 |
|
140 |
-
# TODO: implement batch size in training, this will speed up the training loop
|
141 |
-
# quite a bit I believe
|
142 |
def train(self, X_train: np.ndarray, y_train: np.ndarray) -> "NN":
|
143 |
for _ in gr.Progress().tqdm(range(self.epochs)):
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
self._loss_history.append(loss)
|
147 |
self._backward(
|
148 |
-
X_train=
|
149 |
y_hat=y_hat,
|
150 |
-
y_train=
|
151 |
hidden_output=hidden_output,
|
152 |
)
|
153 |
|
@@ -162,4 +176,4 @@ class NN:
|
|
162 |
|
163 |
def predict(self, X_test: np.ndarray) -> np.ndarray:
|
164 |
pred, _ = self._forward(X_test)
|
165 |
-
return self.
|
|
|
15 |
learning_rate: float
|
16 |
hidden_size: int
|
17 |
input_size: int
|
18 |
+
batch_size: float
|
19 |
output_size: int
|
20 |
hidden_activation_fn: Activation
|
21 |
+
output_activation_fn: Activation
|
22 |
loss_fn: Loss
|
23 |
seed: int
|
24 |
|
|
|
27 |
_wh: np.ndarray = field(default_factory=lambda: np.ndarray([]), init=False)
|
28 |
_bo: np.ndarray = field(default_factory=lambda: np.ndarray([]), init=False)
|
29 |
_bh: np.ndarray = field(default_factory=lambda: np.ndarray([]), init=False)
|
30 |
+
|
31 |
+
# not currently using this, see TODO: at bottom of this file
|
32 |
+
# _weight_history: dict[str, list[np.ndarray]] = field(
|
33 |
+
# default_factory=lambda: {
|
34 |
+
# "wo": [],
|
35 |
+
# "wh": [],
|
36 |
+
# "bo": [],
|
37 |
+
# "bh": [],
|
38 |
+
# },
|
39 |
+
# init=False,
|
40 |
+
# )
|
41 |
|
42 |
def __post_init__(self) -> None:
|
43 |
+
assert 0 < self.batch_size <= 1
|
44 |
self._init_weights_and_biases()
|
45 |
|
46 |
+
@classmethod
|
47 |
+
def from_dict(cls, args: dict) -> "NN":
|
48 |
+
return cls(**args)
|
49 |
+
|
50 |
def _init_weights_and_biases(self) -> None:
|
51 |
"""
|
52 |
NN._init_weights_and_biases(): Should only be ran once, right before training loop
|
|
|
72 |
* np.sqrt(2 / self.hidden_size),
|
73 |
dtype=DTYPE,
|
74 |
)
|
|
|
75 |
|
76 |
# def _forward(self, X_train: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
|
77 |
# # Determine the activation function for the hidden layer
|
|
|
123 |
bo_prime = np.sum(error_output, axis=0, keepdims=True) * self.learning_rate
|
124 |
|
125 |
# Propagate the error back to the hidden layer
|
126 |
+
error_hidden = np.dot(
|
127 |
+
error_output, self._wo.T
|
128 |
+
) * self.output_activation_fn.backward(hidden_output)
|
129 |
|
130 |
# Calculate gradients for hidden layer weights and biases
|
131 |
wh_prime = np.dot(X_train.T, error_hidden) * self.learning_rate
|
132 |
bh_prime = np.sum(error_hidden, axis=0, keepdims=True) * self.learning_rate
|
133 |
|
134 |
# Gradient clipping to prevent overflow
|
135 |
+
max_norm = 1.0 # this is an adjustable threshold
|
136 |
wo_prime = np.clip(wo_prime, -max_norm, max_norm)
|
137 |
bo_prime = np.clip(bo_prime, -max_norm, max_norm)
|
138 |
wh_prime = np.clip(wh_prime, -max_norm, max_norm)
|
|
|
144 |
self._bo -= bo_prime
|
145 |
self._bh -= bh_prime
|
146 |
|
|
|
|
|
147 |
def train(self, X_train: np.ndarray, y_train: np.ndarray) -> "NN":
|
148 |
for _ in gr.Progress().tqdm(range(self.epochs)):
|
149 |
+
|
150 |
+
n_samples = int(self.batch_size * X_train.shape[0])
|
151 |
+
batch_indeces = np.random.choice(
|
152 |
+
X_train.shape[0], size=n_samples, replace=False
|
153 |
+
)
|
154 |
+
|
155 |
+
X_train_batch = X_train[batch_indeces]
|
156 |
+
y_train_batch = y_train[batch_indeces]
|
157 |
+
|
158 |
+
y_hat, hidden_output = self._forward(X_train=X_train_batch)
|
159 |
+
loss = self.loss_fn.forward(y_hat=y_hat, y_true=y_train_batch)
|
160 |
self._loss_history.append(loss)
|
161 |
self._backward(
|
162 |
+
X_train=X_train_batch,
|
163 |
y_hat=y_hat,
|
164 |
+
y_train=y_train_batch,
|
165 |
hidden_output=hidden_output,
|
166 |
)
|
167 |
|
|
|
176 |
|
177 |
def predict(self, X_test: np.ndarray) -> np.ndarray:
|
178 |
pred, _ = self._forward(X_test)
|
179 |
+
return self.output_activation_fn.forward(pred)
|
vis.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import matplotlib
|
2 |
from sklearn import datasets
|
3 |
-
import plotly.graph_objects as go
|
4 |
import plotly.express as px
|
5 |
import matplotlib.pyplot as plt
|
6 |
import matplotlib
|
@@ -15,13 +14,13 @@ def show_digits():
|
|
15 |
for ax, image, label in zip(axes, digits.images, digits.target):
|
16 |
ax.set_axis_off()
|
17 |
ax.imshow(image, cmap=plt.cm.gray_r, interpolation="nearest")
|
18 |
-
ax.set_title("Training:
|
19 |
return fig
|
20 |
|
21 |
|
22 |
def loss_history_plt(loss_history: list[float], loss_fn_name: str):
|
23 |
return px.line(
|
24 |
-
x=
|
25 |
y=loss_history,
|
26 |
title=f"{loss_fn_name} Loss vs. Training Epoch",
|
27 |
labels={
|
@@ -42,12 +41,11 @@ def hits_and_misses(y_pred: np.ndarray, y_true: np.ndarray):
|
|
42 |
"True: " + str(y_true_decoded[i]) + ", Pred: " + str(y_pred_decoded[i])
|
43 |
for i in range(len(y_pred_decoded))
|
44 |
]
|
45 |
-
|
46 |
return px.scatter(
|
47 |
x=np.arange(len(y_pred_decoded)),
|
48 |
y=y_true_decoded,
|
49 |
color=color,
|
50 |
-
title="Hits and Misses of Predictions",
|
51 |
labels={
|
52 |
"color": "Prediction Correctness",
|
53 |
"x": "Sample Index",
|
@@ -59,8 +57,6 @@ def hits_and_misses(y_pred: np.ndarray, y_true: np.ndarray):
|
|
59 |
|
60 |
|
61 |
def make_confidence_label(y_pred: np.ndarray, y_test: np.ndarray):
|
62 |
-
# decode the one hot endoced predictions
|
63 |
-
y_pred_labels = np.argmax(y_pred, axis=1)
|
64 |
y_test_labels = np.argmax(y_test, axis=1)
|
65 |
confidence_dict: dict[str, float] = {}
|
66 |
for idx, class_name in enumerate([str(i) for i in range(10)]):
|
|
|
1 |
import matplotlib
|
2 |
from sklearn import datasets
|
|
|
3 |
import plotly.express as px
|
4 |
import matplotlib.pyplot as plt
|
5 |
import matplotlib
|
|
|
14 |
for ax, image, label in zip(axes, digits.images, digits.target):
|
15 |
ax.set_axis_off()
|
16 |
ax.imshow(image, cmap=plt.cm.gray_r, interpolation="nearest")
|
17 |
+
ax.set_title(f"Training: {label}")
|
18 |
return fig
|
19 |
|
20 |
|
21 |
def loss_history_plt(loss_history: list[float], loss_fn_name: str):
|
22 |
return px.line(
|
23 |
+
x=list(range(len(loss_history))),
|
24 |
y=loss_history,
|
25 |
title=f"{loss_fn_name} Loss vs. Training Epoch",
|
26 |
labels={
|
|
|
41 |
"True: " + str(y_true_decoded[i]) + ", Pred: " + str(y_pred_decoded[i])
|
42 |
for i in range(len(y_pred_decoded))
|
43 |
]
|
|
|
44 |
return px.scatter(
|
45 |
x=np.arange(len(y_pred_decoded)),
|
46 |
y=y_true_decoded,
|
47 |
color=color,
|
48 |
+
title="Hits and Misses of Predictions on Validation Set",
|
49 |
labels={
|
50 |
"color": "Prediction Correctness",
|
51 |
"x": "Sample Index",
|
|
|
57 |
|
58 |
|
59 |
def make_confidence_label(y_pred: np.ndarray, y_test: np.ndarray):
|
|
|
|
|
60 |
y_test_labels = np.argmax(y_test, axis=1)
|
61 |
confidence_dict: dict[str, float] = {}
|
62 |
for idx, class_name in enumerate([str(i) for i in range(10)]):
|
warning.md
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## What is this?
|
2 |
+
|
3 |
+
This is a no code platform for interacting with Numpy-Neuron, a neural network framework that I have built from scratch
|
4 |
+
using only [numpy](https://numpy.org/). Here, you can test different hyper parameters that will be fed to Numpy-Neuron and used to train a neural network for classification on the [MNIST](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) dataset of 8x8 pixel images of hand drawn numbers.
|
5 |
+
|
6 |
+
Once training is done, the final model will be tested by making predictions on an unseen subset of the dataset called the validation set. There will be a plot of hits vs. misses, measuring the accuracy of the final model on images that did not see in training. There will also be a label at the bottom that shows the average confidence of the final model when it was making its predictions on unseen data across the different labels (digits 0-9).
|
7 |
+
|
8 |
+
## ⚠️ Warning ⚠️
|
9 |
+
This application is impossibly slow on the HuggingFace CPU instance that it is running on. It is advised to clone the
|
10 |
+
repository and run it locally.
|
11 |
+
|
12 |
+
## Steps for running locally:
|
13 |
+
|
14 |
+
1. `git clone https://huggingface.co/spaces/Jensen-holm/Numpy-Neuron`
|
15 |
+
|
16 |
+
2. `pip3 install -r requirements.txt`
|
17 |
+
|
18 |
+
3. `python3 app.py`
|