Jensen Holm commited on
Commit
ff1254a
·
1 Parent(s): 9249567

adding unit tests for activation functions (using pytest)

Browse files
numpyneuron/__init__.py CHANGED
@@ -1,3 +1,10 @@
1
  from .loss import *
2
  from .activation import *
3
  from .nn import *
 
 
 
 
 
 
 
 
1
  from .loss import *
2
  from .activation import *
3
  from .nn import *
4
+
5
+ ACTIVATIONS: dict[str, Activation] = {
6
+ "Relu": Relu(),
7
+ "Sigmoid": Sigmoid(),
8
+ "TanH": TanH(),
9
+ "SoftMax": SoftMax(),
10
+ }
numpyneuron/activation.py CHANGED
@@ -39,18 +39,11 @@ class Sigmoid(Activation):
39
 
40
  class SoftMax(Activation):
41
  def forward(self, X: np.ndarray) -> np.ndarray:
 
42
  exps = np.exp(
43
- X - np.max(X, axis=1, keepdims=True)
44
  ) # Avoid numerical instability
45
- return exps / np.sum(exps, axis=1, keepdims=True)
46
 
47
  def backward(self, X: np.ndarray) -> np.ndarray:
48
  return X
49
-
50
-
51
- ACTIVATIONS: dict[str, Activation] = {
52
- "Relu": Relu(),
53
- "Sigmoid": Sigmoid(),
54
- "TanH": TanH(),
55
- "SoftMax": SoftMax(),
56
- }
 
39
 
40
  class SoftMax(Activation):
41
  def forward(self, X: np.ndarray) -> np.ndarray:
42
+ ax = 1 if X.ndim > 1 else 0
43
  exps = np.exp(
44
+ X - np.max(X, axis=ax, keepdims=True)
45
  ) # Avoid numerical instability
46
+ return exps / np.sum(exps, axis=ax, keepdims=True)
47
 
48
  def backward(self, X: np.ndarray) -> np.ndarray:
49
  return X
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,7 +1,8 @@
1
- gradio==4.27.0
2
- matplotlib==3.8.4
3
- numpy==1.26.4
4
- plotly==5.21.0
5
- scikit_learn==1.4.2
6
- setuptools==69.5.1
7
- tqdm==4.66.2
 
 
1
+ gradio==4.39.0
2
+ matplotlib==3.6.3
3
+ numpy==2.0.1
4
+ plotly==5.22.0
5
+ pytest==7.4.4
6
+ scikit_learn==1.5.1
7
+ setuptools==68.1.2
8
+ tqdm==4.66.4
test/__init__.py ADDED
File without changes
test/test_activation.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import pytest
4
+
5
+ sys.path.append(os.path.abspath(".."))
6
+
7
+ import random
8
+ import numpy as np
9
+ from numpyneuron import (
10
+ TanH,
11
+ Sigmoid,
12
+ Relu,
13
+ SoftMax,
14
+ Sigmoid,
15
+ )
16
+
17
+ # these functions are meant to work with np.ndarray
18
+ # objects, but they will also work with numbers which
19
+ # makes testing a little bit simpler
20
+
21
+
22
+ def test_tanh() -> None:
23
+ """
24
+ tanh(1) =~ 0.76
25
+ tanh'(1) =~ sech^2(1) =~ 0.419
26
+ """
27
+ tanh = TanH()
28
+ assert tanh.forward(1) == pytest.approx(np.tanh(1))
29
+ assert tanh.forward(1) == pytest.approx(0.7615941559557649)
30
+ assert tanh.backward(1) == pytest.approx(0.41997434161402614)
31
+
32
+
33
+ def test_sigmoid() -> None:
34
+ """
35
+ sigmoid(1) =~ 0.73105
36
+ sigmoid'(1) =~ 0.1966
37
+ """
38
+ sigmoid = Sigmoid()
39
+ assert sigmoid.forward(1) == pytest.approx(0.7310585786300049)
40
+ assert sigmoid.backward(1) == pytest.approx(0.4621171572600098)
41
+
42
+
43
+ def test_relu() -> None:
44
+ """
45
+ relu(n > 0) = n
46
+ relu(n < 0) = 0
47
+ relu'(n > 0) = 1
48
+ relu'(n < 0) = 0
49
+ """
50
+ relu = Relu()
51
+ random_n = random.randint(1, 100)
52
+ assert relu.forward(random_n) == random_n
53
+ assert relu.backward(random_n) == 1
54
+
55
+
56
+ def test_softmax() -> None:
57
+ """
58
+ softmax([1, 2, 3]) = [0.090031, 0.244728, 0.665241]
59
+ """
60
+ softmax = SoftMax()
61
+ vec = np.array([1, 2, 3])
62
+ assert np.allclose(
63
+ softmax.forward(vec),
64
+ np.array([0.090031, 0.244728, 0.665241]),
65
+ )
66
+ assert np.allclose(softmax.backward(vec), vec)