from flask import Flask, request, jsonify, render_template from flask_cors import CORS from dataset.iris import iris from opts import options # using the iris data set for every algorithm # just for simplicity sake X, y = iris() app = Flask(__name__) CORS(app, origins="*") @app.route("/neural-network", methods=["POST"]) def neural_network(): algorithm = options["neural-network"] args = request.json["arguments"] result = algorithm( X=X, y=y, args=args, ) return jsonify(result) @app.route("/kmeans-clustering", methods=["POST"]) def kmeans(): algorithm = options["kmeans-clustering"] args = request.json["arguments"] result = algorithm( X=X, y=y, clusterer="kmeans-clustering", args=args, ) return jsonify(result) if __name__ == "__main__": app.run(debug=False)