from sklearn.model_selection import train_test_split import numpy as np from neural_network.opts import activation from neural_network.backprop import bp from neural_network.model import Network from neural_network.plot import loss_history_plt, save_plt def init(X: np.array, hidden_size: int) -> dict: """ returns a dictionary containing randomly initialized weights and biases to start off the neural_network """ return { "W1": np.random.randn(X.shape[1], hidden_size), "b1": np.zeros((1, hidden_size)), "W2": np.random.randn(hidden_size, 1), "b2": np.zeros((1, 1)), } def main( X: np.array, y: np.array, args, ) -> None: wb = init(X, args["hidden_size"]) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=8675309 ) # once we have these results we should test it against # the y_test data results, loss_history = bp(X_train, y_train, wb, args) final = results[args["epochs"] - 1] func = activation[args["activation_func"]]["main"] # initialize our final network fm = Network(final_wb=final, activation_func=func) # predict the x test data and compare it to y test data pred = fm.predict(X_test) mse = np.mean((pred - y_test) ** 2) print(f"mean squared error: {mse}") # plot predicted versus actual # also plot the training loss over epochs animated_loss_plt = loss_history_plt(loss_history) save_plt(animated_loss_plt, "plt.svg", animated=True, fps=30)