from sklearn.datasets import load_iris from sklearn.preprocessing import OneHotEncoder, StandardScaler import numpy as np def iris() -> tuple[np.array]: """ returns a tuple of numpy arrays containing the iris dataset split into training and testing sets after being normalized and one-hot encoded """ iris = load_iris() scaler = StandardScaler() x = scaler.fit_transform(iris.data) y = OneHotEncoder().fit_transform(iris.target.reshape(-1, 1)).toarray() return x, y