import numpy as np from tqdm import tqdm from neural_network.opts import activation def bp(X_train: np.array, y_train: np.array, wb: dict, args: dict) -> (dict, np.array): epochs = args["epochs"] func = activation[args["activation_func"]]["main"] func_prime = activation[args["activation_func"]]["prime"] w1, w2 = wb["W1"], wb["W2"] b1, b2 = wb["b1"], wb["b2"] lr = args["learning_rate"] r = {} loss_history = [] for e in tqdm(range(epochs)): # forward prop node1 = compute_node(arr=X_train, w=w1, b=b1, func=func) y_hat = compute_node(arr=node1, w=w2, b=b2, func=func) error = y_hat - y_train mean_squared_error = mse(y_train, y_hat) loss_history.append(mean_squared_error) # backprop dw1 = np.dot( X_train.T, np.dot(error * func_prime(y_hat), w2.T) * func_prime(node1), ) dw2 = np.dot( node1.T, error * func_prime(y_hat), ) db2 = np.sum(error * func_prime(y_hat), axis=0) db1 = np.sum(np.dot(error * func_prime(y_hat), w2.T) * func_prime(node1), axis=0) # update weights & biases using gradient descent. # this is -= and not += because if the gradient descent # is positive, we want to go down. w1 -= (lr * dw1) w2 -= (lr * dw2) b1 -= (lr * db1) b2 -= (lr * db2) # keeping track of each epochs' numbers r[e] = { "W1": w1, "W2": w2, "b1": b1, "b2": b2, "dw1": dw1, "dw2": dw2, "db1": db1, "db2": db2, "error": error, "mse": mean_squared_error, } return r, loss_history def compute_node(arr, w, b, func): """ Computes nodes during forward prop """ return func(np.dot(arr, w) + b) def mse(y: np.array, y_hat: np.array): return np.mean((y - y_hat) ** 2)